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ABSTRACT

While Shannon already characterized the capacity of point-to-point channels back in 1948,

characterizing the capacity of wireless networks has been a challenging problem. The determin-

istic channel model proposed by Avestimehr, etc. (2007 - 1) has been a promising approach

for approximating the Gaussian channel capacity and has been widely studied recently. Moti-

vated by this model, an improved combinatorial algorithm is considered for finding the unicast

capacity for wireless information flow on such deterministic networks in the first part of this

thesis. Our algorithm fully explores the useful combinatorial features intrinsic in the problem.

Our improvement applies generally with any size of finite fields associated with the channel

model. Comparing with other related algorithms, our improved algorithm has very competitive

performance in complexity.

In the second part of our work, we consider the design and analysis of rate-compatible

LDPC codes. Rate-compatible LDPC codes are basically a family of nested codes, operating

at different code rates and all of them can be encoded and decoded using a single encoder and

decoder pair. Those properties make rate-compatible LDPC codes a good choice for changing

channel conditions, like in wireless communications. The previous work on the design and

analysis of LDPC codes are all targeting at a specific code rate and no work is known on

the design and analysis of rate-compatible LDPC codes so that the code performance at all

code rates in the family is manageable and predictable. In our work, we proposed algorithms

for the design and analysis of rate-compatible LDPC codes with good performance and make

the code performance at all code rates manageable and predictable. Our work is based on

E2RC codes, while our approaches in the design and analysis can be applied more generally

not only to E2RC codes, but to other suitable scenarios, like the design of IRA codes. Most
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encouragingly, we obtain families of rate-compatible codes whose gaps to capacity are at most

0.3 dB across the range of rates when the maximum variable node degree is twenty, which is

very promising compared with other existing results.



www.manaraa.com

1

CHAPTER 1. OVERVIEW

Two fundamental questions in the design of communication systems are: (1) What are the

theoretical limits on the amount of information that can be reliably transmitted over given

communication systems? (2) What are the practical transmission schemes to approach these

limits? Information theory and coding theory have been developed trying to answer these two

questions following Shannon’s pioneering work in 1948 (Shannon (1948)). Significant advances

have been seen since then and bring us closer to the answers. Despite all the progress, there

are still many open areas. The work in this thesis contributes to finding answers to these two

questions in some open areas.

In this thesis, the capacity of communication systems refers to the theoretical limits on the

information rate that can be achieved with arbitrarily small error probability. While Shannon

already characterized the capacity of point-to-point channels back in 1948, characterizing the

capacity of wireless networks has been a challenging problem for the past few decades. While

the exact capacity characterization seems to be a distant goal, there is an increasing research

interest in studying the approximate capacity using some simplified channel models. The

deterministic channel model proposed by Avestimehr, etc. (2007 - 1) (referred as ADT model

thereafter) has been a promising approach for approximating the Gaussian channel capacity

and has been widely studied recently.

Motivated by this model, an improved combinatorial algorithm is considered for finding the

unicast capacity for wireless information flow on such deterministic networks in the first part

of this thesis. Our algorithm fully explores the useful combinatorial features intrinsic in the

problem. Our improvement applies generally with any size of finite fields associated with the

channel model. Comparing with other algorithms on solving the same problem, our improved
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algorithm is very competitive in terms of complexity.

The first part of our work contributes to efficiently computing the capacities of given

networks, while the second part of our work contributes to designing efficient channel codes

approaching the theoretical limits established above.

Channel coding theory can be divided into two branches, classical coding and modern

coding (Richardson & Urbanke (2008)). The classical coding is featured by algebraic codes,

like linear block codes and convolutional codes, with Reed-Solomon codes as a representative,

while the modern coding is featured by efficient iterative probabilistic local decoding and

random sparse code graphs, with Turbo codes and low-density parity-check (LDPC) codes as

two main representatives.

In the second part of our work, we consider the design and analysis of rate-compatible

LDPC codes. Rate-compatible LDPC codes can be described by a mother code and puncturing

patterns. They are basically a family of nested codes where coded bits of higher rate codes

are embedded in those of lower rate codes. The code corresponding to the lowest rate is called

mother code and all other codes can be obtained by puncturing the mother code. The family of

codes operates at different code rates and all of them can be encoded and decoded using a single

encoder and decoder pair. Those properties make rate-compatible LDPC codes a good choice

for changing channel conditions, like in wireless communications. The previous work on the

design and analysis of LDPC codes are all targeting at a specific code rate and no work is known

on the design and analysis of rate-compatible LDPC codes so that the code performance at all

code rates in the family is manageable and predictable. In our work, we proposed algorithms

for the design and analysis of rate-compatible LDPC codes with good puncturing performance

and make the code performance at all code rates manageable and predictable. Our work is

based on E2RC codes, while our approaches in the design and analysis can be applied more

generally not only to E2RC codes, but to other suitable scenarios, like the design of IRA codes

(Jin, etc. (2000)). Our approaches are described in detail in Chapter 4. Most encouragingly,

we obtain families of rate-compatible codes whose gaps to capacity are at most 0.3 dB across

the range of rates when the maximum variable node degree is twenty, which is very promising
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compared with other existing results.

Specifically, we consider the design and analysis of the efficiently-encodable rate-compatible

(E2RC) irregular LDPC codes proposed in previous work. In this part we introduce semi-

structured E2RC-like codes and protograph E2RC codes. EXIT chart based methods are

developed for the design of semi-structured E2RC-like codes that allow us to determine near-

optimal degree distributions for the systematic part of the code while taking into account the

structure of the deterministic parity part, thus resolving one of the open issues in the original

construction. We develop a fast EXIT function computation method that does not rely on

Monte-Carlo simulations and can be used in other scenarios as well. Our approach allows us

to jointly optimize code performance across the range of rates under puncturing. We then

consider protograph E2RC codes (that have a protograph representation) and propose rules

for designing a family of rate-compatible punctured protographs with low thresholds. For both

the semi-structured and protograph E2RC families we obtain codes whose gap to capacity is

at most 0.3 dB across the range of rates when the maximum variable node degree is twenty.

In this chapter, we give an overview on the current progress on studying wireless information

flow and the proposal of the deterministic channel model, as well as the development of low-

density parity-check (LDPC) codes and rate-compatible LDPC codes.

1.1 Introduction on Wireless Information Flow

Information theory by Shannon (1948) has laid the theoretical foundation for modern com-

munications. It says that there is an inherent fundamental limit on the information rate that

can be transmitted over any given communication channel, which is called channel capacity.

And this theoretical limit should guide the development of any practical transmission schemes.

There is no hope to exceed this limit but practical transmission schemes can be designed trying

to approach this limit so as to maximize the utility of the communication channels.

Since its advent, Shannon’s information theory has been successfully applied in comput-

ing the capacities of various point-to-point channels, however, the extension to wireless relay

networks has proven to be a really challenging task. In fact, except for a few simple wireless
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networks, the exact capacity region of most wireless networks is unknown. The difficulty comes

from the facts that signal interactions in the wireless networks are very complicated. The in-

herent features of wireless communications include broadcasting, interfering, fading, etc, and

all these features contribute to the difficulty of the problem for finding out the exact capacity

regions for wireless networks.

The most widely used physical layer channel model in wireless communications has been

the linear channel model with Gaussian noise. Fig. 1.1 shows an example of a Gaussian channel

model

y = h · x+ n

where n ∼ N (0, 1) is the additive Gaussian noise variable and h is the channel gain.

Figure 1.1 Gaussian channel model

1.1.1 The Known Facts

For the Gaussian wireless networks, only for a few network examples, i.e., the point-to-point

Gaussian channel, the Gaussian broadcast channel and the Gaussian multiple access channel

(MAC), their capacity regions are known exactly(Cover & Thomas (2006)). Next let’s recall

their capacity characterization.

For a point-to-point Gaussian channel as shown in Fig. 1.1, the capacity is given as

C =
1

2
log2(1 + SNR)

where SNR= h2 is the signal to noise ratio of the channel. Here both transmit power and

noise power are normalized to be 1 and the signal-to-noise ratio (SNR) is captured in terms of

channel gains.
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A Gaussian broadcast channel is shown in Fig. 1.2 with

yi =
√

SNRi · x+ ni, i = 1, 2

The transmitter wishes to send independent messages at rates R1 and R2 to receivers y1 and

y2, respectively. The capacity region is given as

R1 ≤
1

2
log2(1 + αSNR1)

R2 ≤
1

2
log2(1 +

(1− α)SNR2

αSNR2 + 1
)

where SNR1 and SNR2 are signal to noise ratios of the two link channels respectively and α

may be arbitrarily chosen 0 ≤ α ≤ 1 to trade off rate R1 for rate R2 as the transmitter wishes.

Fig. 1.3 shows the capacity region for the case when SNR1 ≥SNR2.

Figure 1.2 Gaussian broadcast channel model

Figure 1.3 Capacity region of Gaussian broadcast channel

A Gaussian MAC is shown in Fig. 1.4 with

y =
√

SNR1 · x1 +
√

SNR2 · x2 + n
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Two transmitters want to send information to a common receiver at rates R1 and R2 respec-

tively. The capacity region is given as

R1 ≤
1

2
log2(1 + SNR1)

R2 ≤
1

2
log2(1 + SNR2)

R1 +R2 ≤
1

2
log2(1 + SNR1 + SNR2)

where SNR1 and SNR2 are signal to noise ratios of the two broadcasting channels respectively.

Fig. 1.5 shows the capacity region for the case when SNR1 ≥SNR2.

Figure 1.4 Gaussian multiple access channel model

Figure 1.5 Capacity region of Gaussian multiple access channel

1.1.2 The Unknown

The above wireless network examples are the only a few cases when their capacities are

known exactly. For all other wireless networks, including the very simple single relay Gaussian
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network as shown in Fig. 1.6 and two relay Gaussian network as shown in Fig. 1.7, their

capacities are not known exactly, let alone more complicated Gaussian wireless networks.

In general, the only known upper bound on the capacity of Gaussian relay networks is the

information theoretical cut-set upper bound, which says that if the information rates {Rij}

are achievable, there exists some joint probability distribution p(x1, x2, ..., xm) such that

∑
i∈S,j∈Sc

Rij ≤ I(XS ;YSc |XSc)

for all S ⊂ {1, 2, ...m}, where S/Sc is a cut separating the network nodes 1 through m.

Figure 1.6 Single relay Gaussian network

Figure 1.7 Two relays Gaussian network

Several relay strategies for wireless relay networks have been developed, such as amplify-

and-forward (AF), decode-and-forward (DF), etc., but none of them achieve this cut-set upper

bound. It is even not clear what the gap is between the achievable rates of these relay strategies

and the cut-set upper bound.



www.manaraa.com

8

1.2 A Step Further – the Deterministic Channel Model

To make further progress, Avestimehr, etc. (2007 - 1) have proposed a deterministic

channel model (i.e., the ADT model) to approximate Gaussian channel model. It is a far

simpler channel model than the Gaussian channel model which make the analysis of wireless

information flow simpler. The ADT model not only models the two main features of wireless

communications, namely, broadcasting and superposition (or interfering), but also be more

analytically tractable. In Chapter 2, we will elaborate on the ADT model and motivate our

study of network flow algorithms for deterministic wireless relay networks.

1.3 Introduction on LDPC Codes

LDPC codes introduced in Gallager (1963) have near-capacity performance on a large

variety of channels and low decoding complexity, and have been proposed in a number of new

applications and standards. An LDPC code is a linear block code with low density non-zero

entries in its parity-check matrix.

1.3.1 Representation of LDPC Codes

Like other linear block codes, an LDPC code can be defined by its generator matrix or

parity-check matrix and most commonly by its parity-check matrix. Moreover an LDPC code

can be equivalently represented by a bipartite graph or the so called Tanner graph in Tanner

(1981), where each edge in the graph connects a variable node (representing the bits) on one

side with a check node (representing the parity-check equations) on the other side.

1.3.2 Regular and Irregular LDPC Codes

Let M,N be the total number of columns, rows respectively in the parity-check matrix

for an LDPC code and K = N −M . A regular LDPC code has a parity-check matrix with

exactly the same number wc non-zero entries in each column and exactly the same number wr

non-zero entries in each row, where both wc and wr are much smaller than the total number



www.manaraa.com

9

of rows. The code rate of an LDPC code is

R = K/N = 1− wc/wr

assuming that the parity-check matrix H has full-rank. An irregular LDPC code has a parity-

check matrix with varying number of non-zero entries in each column or row. To specify an

ensemble of irregular LDPC codes, degree distribution polynomials λ(x) and ρ(x) are used.

λ(x) =

dv∑
d=1

λdx
d−1

ρ(x) =

dc∑
d=1

ρdx
d−1

where λd denotes the fraction of all edges connected to degree-d variable nodes and dv denotes

the maximum variable node degree, ρd denotes the fraction of all edges connected to degree-d

check nodes and dc denotes the maximum check node degree.

1.3.3 Decoding of LDPC Codes

The commonly used decoding algorithms for LDPC codes are some kinds of iterative de-

coding algorithm, known as belief propagation algorithm, sum-product algorithm or message

passing algorithm. There are also some variations of iterative algorithms. These iterative

algorithm compute the distributions of variables (likelihood ratios) passing around the code’s

Tanner graph during the decoding process. Usually a finite number of iterative decoding iter-

ations is enforced on the decoder and the codeword is decoded based on the final distributions

of the likelihood ratios.

We describe the iterative decoder for LDPC codes assuming that a binary-input AWGN

channel, y = x + n, is in use, where x ∈ {+1,−1} corresponds to coded bit c ∈ {0, 1} and

n ∼ N (0, σ2) is the additive Gaussian noise variable. The log-likelihood ratio for the coded

bit c is computed as

Lch = log (
p(x = +1|y)

p(x = −1|y)
) =

2y

σ2
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Let V (C) denote the set of all variable (check) nodes in the Tanner graph representation of

the LDPC code. During the decoding process, the message passing follows the following rules:

Lv→c = Lch,v +
∑

c′∈C,c′ 6=c
Lc′→v

Lc→v = 2tanh−1(
∏

v′∈V,v′ 6=v
tanh(Lv′→c))

where Lv→c is the message from variable node v to check node c if there is edge connection

between them in the Tanner graph and Lc→v is the message from check node c to variable

node v if there is a connection between them in the Tanner graph, similarly defined the other

variables in the equations above.

Upon termination of the decoding process, the coded bit c is decoded as 0 if its log-likelihood

ratio is larger than 0, otherwise is decoded to be 1.

1.3.4 Protograph LDPC Codes

There have been numerous constructions of LDPC codes proposed in the literature ranging

from random choice to algebraic constructions (Richardson, etc. (2001) and references herein).

Most LDPC codes used in industry need to have some structure that allows parallelizable

decoding. Moreover the amount of storage required to store the description of the parity-check

matrix needs to be small, i.e., storing completely random permutations is not feasible due

to implementation issues. The protograph based LDPC codes introduced in Thorpe (2003)

address this issue in part.

Protograph codes have the advantage that the asymptotic threshold of the code can be

found by performing density evolution (Richardson, etc. (2001), Richardson & Urbanke

(2001), Richardson (2009)) on the protograph. Moreover, if instead of a random permutation

we choose a random circulant permutation that can be specified by a circular shift of the iden-

tity matrix then the storage requirement can be reduced tremendously and a fast parallelizable

decoder can be implemented in hardware.

LDPC codes based on protographs were first introduced in Thorpe (2003). The main

idea here is to start with a small mini-graph (called a protograph) and construct the LDPC
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code by replacing each edge in the protograph by a random permutation of a fixed size (see

Figure 1.8 for an example). Protograph based codes can be considered as a subclass of the

multi-edge type LDPC codes Richardson (2009). In the protograph representation, each edge

represents one edge type, and parallel edges are allowed. Density evolution can be performed

on protographs to determine their asymptotic performance.

Figure 1.8 Copy-and-permute in generating larger graph from protograph

1.3.5 Multi-Edge Type LDPC Codes

Multi-edge type LDPC codes in Richardson (2009) is a generalization of the concept of

irregular LDPC codes that yields improvements in performance, range of applications, adapt-

ability and error floor. The degree distribution polynomial pair, (λ(x), ρ(x)), for studying

irregular LDPC codes apply very well when the LDPC code in consideration is highly ran-

dom or non-structured. For structured or semi-structured LDPC codes, such as E2RC codes,

RA codes, IRA codes, eIRA codes, etc, multi-edge type LDPC codes proposed in Richardson

(2009) would be a better representation, admitting all the above mentioned constructions

as special cases. The multi-edge type LDPC codes concept is used throughout our work in

Chapter 4, for both semi-structured E2RC codes and protograph E2RC codes and proves to

be very effective.
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1.4 Rate-Compatible LDPC Codes

Another desirable feature in practice especially for wireless channels is rate-compatibility.

Rate-compatible puncturing was introduced in Hagenauer (1988) as a technique to obtain a

family of codes of varying rates while retaining the same encoder-decoder pair. Rate-compatible

punctured codes are a practical low-complexity solution that are useful in hybrid-ARQ pro-

tocols and situations where the channel quality varies over time. The mother code (which

is systematic) in these systems corresponds to the lowest code rate. Higher code rates can

be obtained by only transmitting a subset of the parity bits. The parity bits that are not

transmitted are said to be punctured. The parity bits of higher-rate codes are chosen to be

a subset of the parity bits of the lower rate codes. Throughout this thesis for the bipartite

graph representation of a rate-compatible LDPC code, we follow the convention that a blank

circle represents an unpunctured variable node that participates in the transmission and a

filled circle represents a punctured variable node that does not participate in transmission. A

check node is represented by a blank circle with a plus sign in it.

1.4.1 Construction of Rate-Compatible LDPC Codes

A number of papers have investigated the construction of rate-compatible punctured LDPC

codes Kim, etc. (2009), Ha, etc. (2004 - 1), Ha, etc. (2004 - 2), Ha, etc. (2006), Yue, etc.

(2007), Yazdani & Banihashemi (2004). The main challenge here is the design of a mother

code and the puncturing pattern such that the BER/FER of the codes of all rates is low. In

order words, it is desirable that the rate-compatible codes have good code performance at all

code rates and the code performance at all code rates can be managed and predicted. There

are two main approaches that address the problem of rate compatibility.

• Optimizing degree distributions for puncturing.

In Ha, etc. (2004 - 1), the authors found the optimal degree distributions for puncturing

using density evolution analysis. In Ha, etc. (2004 - 2), Ha, etc. (2006), Yue, etc.

(2007), the authors proposed algorithms for finding good puncturing patterns for given

mother code.
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• Design of a good mother code and the puncturing pattern.

Here the attempt is to design LDPC codes with a specific structure that allows good

performance across a range of rates. Some recent works include Kim, etc. (2009),

Yazdani & Banihashemi (2004). These approaches have been guided in part by the

criteria used in design good puncturing patterns as well.

In chapter 2, we will elaborate on the efficiently encodable rate-compatible LDPC codes by

Kim, etc. (2009) as our work is inspired by it. We will also introduce the density evolution

and EXIT chart techniques that have been useful in the design and analysis of LDPC codes

and being used in this thesis.
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CHAPTER 2. REVIEW OF LITERATURE

In the first part of this chapter, the background and related work are discussed on the

subject of studying wireless information flow using deterministic wireless networks. First, the

deterministic channel model is introduced, i.e., the ADT model in Avestimehr, etc. (2007 - 1),

Avestimehr, etc. (2007 - 2), Avestimehr, etc. (2009). After that, the characterization of the

capacity regions of the deterministic networks are given. The methodologies of adopting the

ADT model in studying wireless information flow are also discussed. Second, the current status

on the network flow algorithms for studying the capacity of deterministic wireless networks is

given. Several related network flow algorithms are recapped.

In the second part of this chapter, we introduce the efficiently-encodable rate-compatible

LDPC (E2RC) codes. It motivates our work on the design and analysis of rate-compatible

LDPC codes in Chapter 4. The construction of E2RC codes is given with brief discussion on

the desirable features of the codes. Density evolution including EXIT chart analysis proves to

be very useful in the design and analysis of LDPC codes and has been used throughout our

work in Chapter 4. They are introduced at the end of this chapter.

2.1 The Deterministic Channel Model (ADT Model)

The complex signal interactions in wireless relay networks challenge the study of wireless

information flow for many years. To characterize the capacity and capacity-achieving trans-

mission schemes for wireless relay networks still remain open questions. Towards this end,

the deterministic channel model for wireless relay networks proposed by Avestimehr, Diggavi

and Tse has been a significant progress. The broadcast and inference are two fundamental

features of wireless communications. The deterministic channel model captures the broadcast
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and inference features of wireless communications in addition to converting the wireless relay

networks into deterministic networks. Studying the information flow in the deterministic net-

works provides a way to find out the approximated capacity and corresponding transmission

strategies for original wireless relay networks.

Gaussian channel model has been the most widely used channel model for the point-to-point

channels in wireless relay networks. The deterministic channel model quantizes the transmitted

signal into different bit levels and at the receiver keeps the signal bit levels above the noise

level (which depends on the signal to noise ratio (SNR) of the channel) so as to convert the

original Gaussian channel into a deterministic channel without random noise variables. The

broadcasting of signal at the transmitter is still preserved in the deterministic channel and the

interference of signal at the receiver is modeled by modulo two sum of the bits arrived at the

same signal level.

Now let’s introduce the deterministic channel model by using the example of a point-to-

point AWGN channel from Avestimehr, etc. (2007 - 1). Consider an AWGN channel

y = h · x+ z

where z ∼ N (0, 1) is the additive Gaussian noise variable and h =
√

SNR is the channel gain.

Here both transmit power and noise power are normalized to be 1 and the signal-to-noise ratio

is captured in terms of channel gains. Assume x and z are real numbers, then y can be written

as

y ≈ 2n
n∑
i=1

x(i)2−i +

∞∑
i=1

(x(i+ k) + z(i))2−i

where n = d1
2 log SNRe. If the transmitted signal x is treated as a sequence of bits at different

signal levels, then the deterministic channel model truncates x and passes only its bits above

noise level. Fig. 2.1 gives a concrete example. At the transmitter node Tx and receiver node

Rx, each small cycle represents a signal level. Assume n = 4, so only the first four most

significant signal levels or bits from Tx are received at Rx. Accordingly each edge in the model

can transmit one-bit information at a time.

Similarly, the deterministic models for Gaussian broadcast channel and Gaussian multiple

access channel are shown in Fig 2.2 and 2.3. Note that the broadcasting is modeled by the
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Figure 2.1 The deterministic channel model for a point-to-point Gaussian

channel.

fact that all signals send from the same signal level of the transmitter would be the same and

the inference or superposition is modeled by the fact that for all signals received at the same

signal level of the receiver, only the modulo two sum of them is available to the receiver.

Figure 2.2 The deterministic channel model for Gaussian broadcast chan-

nel.

Figure 2.3 The deterministic channel model for Gaussian MAC.

The deterministic channel model described above is called linear finite-field deterministic

channel model in Avestimehr, Diggavi and Tse ‘07, which is referred to as linear deterministic

channel model in this report.
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2.1.1 How Close Is the ADT Model

In Fig. 2.1, n = d1
2 log SNRe, so it’s easy to conclude that the gap between the capacity of

the ADT model and the Gaussian channel model is within 1
2 bit.

From Fig. 2.2, the capacity region of the deterministic broadcast channel is given by

R1 ≤ n1

R2 ≤ n2

R1 +R2 ≤ n1

where it’s assumed SNR1 ≥SNR2 without loss of generality. The gap between the capacity

regions of the deterministic broadcast channel and of the Gaussian channel is within 1 bit per

user.

From Fig. 2.3, the capacity region of the deterministic multiple access channel is given by

(without loss of generality, assume SNR1 ≥SNR2)

R1 ≤ n1

R2 ≤ n2

R1 +R2 ≤ n1

where it’s assumed SNR1 ≥SNR2 without loss of generality. Again the gap between the

capacity regions of the deterministic multiple access channel and of the Gaussian MAC is

within 1 bit per user.

The negative part about the ADT model is that it fails to approximate the Gaussian MIMO

model very well and the gap between the two capacities could be arbitrarily large. Consider a

Gaussian MIMO channel with channel matrix

H = 2k

 3
4 1

1 1


For the Gaussian model, the singular value of H is of the order of 2k, so the capacity of the

Gaussian MIMO channel is of the order of 2 × 1
2 log(1 + |2k|2) ≈ 2k. For the deterministic



www.manaraa.com

18

model, N11 = N12 = N21 = N22 = k, so the capacity of the deterministic channel is k. For this

example, the gap between the capacities is unbounded when k grows.

Even through the deterministic channel model doesn’t approximate the Gaussian channel

model very well in all cases, it’s still useful in providing insights in our study of wireless

information flow in many scenarios as will become clearer in the later discussion.

2.1.2 Characterization of the Capacity Region of the Deterministic Networks

For general Gaussian relay networks, the cut-set upper bound gives the upper limit on code

rate R that allows reliable transmission of information. Let xi, yi, 1 ≤ i ≤ n be the transmitted

signals and received signal at node i in the network. Let Ω be a cut separating the nodes in the

network into two parts Ω and Ωc. The cut-set upper bound says the information transmission

rate from S ⊆ Ω to D ⊆ Ωc is bounded by

CSD ≤ max
p(x1,...,xn)

min
Ω
I(XΩ;YΩc |XΩc) (2.1)

In the deterministic networks, the unicast capacity and multicast capacity actually achieve

this upper bound.

Since in the deterministic network, the relationship between inputs and outputs are deter-

ministic, the cut-set upper bound in equation 2.1 is equal to

CSD ≤ max
p(x1,...,xn)

min
Ω
H(YΩc |XΩc) (2.2)

2.1.2.1 Unicast capacity

Theorem 1 Given a linear finite-field relay network (with broadcast and multiple access), the

unicast capacity CSD (S - source, D - destination) of such a relay network is given by,

CSD = min
Ω

rank(GΩ,Ωc)

where the minimum is taken over all cuts separating S from D in G.

Proof
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Refer to Avestimehr, etc. (2007 - 2) for proof details. Here only the main ideas of the

proof are reviewed.

The proof is first done on networks that have a layered structure, i.e. all paths from

the source to the destination have equal lengths. With this special structure we get a major

simplification: a sequence of messages can each be encoded into a block of symbols and the

blocks do not interact with each other as they pass through the relay nodes in the network.

Proof outline for layered networks is given below.

The encoding for layered linear deterministic relay networks goes as follows. Source S has

a sequence of messages

wk ∈ {1, 2, ..., 2TR}, k = 1, 2, ...

Each message is encoded by the source S into a signal over T transmission times (symbols),

yielding an overall transmission rate of R. Each relay j operates over blocks of time T symbols

using a mapping

fj : YTj → X Tj

on its received symbols from the previous block of T symbols to transmit signals in the next

block. The mapping is

xj = Fjyj

where Fj is chosen uniformly randomly over all matrix in FqT×qT2 . Given all encoding functions

Fj , the decoder D∈ D attempts to decode each message wk sent from the source.

The probability of error at decoder D is upper bounded by

Pe ≤ 2RT (P(w → w′) = 2RTP(yd(w) = yd(w
′)) (2.3)

where

P(w → w′) = P(yd(w) = yd(w
′))

is the probability that the decoder D mistakes the message w for another message w′, which

can be written as

P(w → w′) = ΣΩ∈ΛD
P(Nodes in Ω can distinguish w,w′ and nodes in Ωc cannot) (2.4)
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GΩ,Ωc is defined as the transfer matrix associated with the nodes in Ω to the nodes in Ωc.

For a layered deterministic network, this transfer matrix breaks up into block diagonal

elements corresponding to each layer of the network. There are L (total number of layers of

nodes in the network) disjoint sub-network corresponding to each layer with βl(Ω) nodes at

distance l−1 from S that are in Ω on one side and γl(Ω) nodes at distance l from S that are in

Ωc on the other, 1 ≤ l ≤ L. For all the receivers in γl, the vector of received signal is denoted

as zl(w), we have

zl(w)− zl(w′) = IT ⊗Gl[ul(w)− ul(w′)], l = 1, 2, ...L

where the transmitted signals from β1, ...βL are clubbed together and denoted by ul(w), l =

1, 2, ...L. The probability that zl(w) = zl(w
′) is the probability that ul(w)− ul(w′) lies in the

null space of IT ⊗Gl, l = 1, 2, ...L.

P{ul(w)− ul(w′) ∈ N (IT ⊗Gl)} = p−rank(IT⊗Gl) = p−Trank(Gl)

P{ul(w)− ul(w′) ∈ N (IT ⊗Gl), l = 1, 2, ...L} =
L∏
l=1

p−rank(IT⊗Gl) = p−T
∑L

l=1 rank(Gl)

Finally,

P(w → w′) ≤
∑

Ω∈ΛD

p−T
∑L

l=1 rank(Gl(Ω)) ≤ 2|V|p−T minΩ∈Λ rank(GΩ,Ωc )

Put it into equation 2.3, we can drive the error probability to zero if

R < min
Ω∈ΛD

rank(GΩ,Ωc)

The above proof is easily extended to the case of multicast.

What left is to extend the current proof to arbitrary deterministic networks besides layered

deterministic networks, which is skipped in this thesis (refer to Avestimehr, etc. (2007 - 2) for

more details). But here we will introduce the concept of time expanded networks which can

expand a non-layered network into a layered network over time.
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Time expansion technique

Time expansion of a network is a technique to expand a given network over time. The

concept of time expanded network has been used in Ahlswede, etc. (2000) and Avestimehr,

etc. (2007 - 2). In the former, it is used to handle cycles. In the latter, it is used to handle

interaction between messages transmitted at different times, an issue that only arises when

there is superposition of signals at nodes.

Next let’s look at an example of the technique of time expansion of a given network.

Fig. 2.4 shows an example of general deterministic networks that are not layered. Fig. 2.5

shows the corresponding time expanded deterministic network. Obviously the time expanded

deterministic network is a layered network. In the time expanded network, the index i, 1 ≤

i ≤ k corresponds to the time index or time parameter. There are k + 1 layers and each

node v ∈ V appears at all time instants i, 1 ≤ i ≤ k. The auxiliary nodes T [i]’s and R[i]’s

are just virtual transmitters and receivers that are put to buffer and synchronize the network.

Since all the communication links connected to T [i]’s and R[i]’s are modeled as wireline links

without capacity limit, they would not impose any constraint on the network. The following

is a Lemma from Avestimehr, etc. (2007 - 2). It’s cited here without proof.

Lemma 2 Assume G is a general deterministic network and GKunf is a network obtained by

unfolding G over K time steps. Then the following communication rates is achievable in G:

R <
1

K
Runf

with

Runf = max∏
i∈V p(xi)

min
Ωunf∈ΛD

H(YΩc
unf
|XΩc

unf
)

is the achievable rate in the time expanded network where the minimum is taken over all cuts

Ωunf in GKunf .

2.1.2.2 Multicast capacity

The characterization of the multicast capacity of deterministic networks is given. The proof

is similar to the above unicast case. Refer to Avestimehr, etc. (2007 - 2) for a complete proof.
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Theorem 3 Given a linear finite-field relay network (with broadcast and multiple access), the

multicast capacity C of such a relay network is given by,

C = min
D∈D

min
Ω

rank(GΩ,Ωc)

where the first minimum is taken over all cuts in G.

From above discussion, it’s easy to conclude that the capacity characterization of the de-

terministic networks for unicast and multicast sessions has a simple max-flow min-cut form

except that here the cut value is defined to be the rank of the binary adjacency matrix for

each cut. This difference makes the algorithms for finding the max flow or min cut for normal

graphs and for deterministic networks different which will be discussed in Chapter 3.

Figure 2.4 An example of general deterministic networks.

Figure 2.5 The time expanded deterministic network.
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2.1.3 Methodologies in Adopting the ADT Model

As mentioned before, due to the complexity of signal interactions, except for the simplest

networks such as the one-to-many Gaussian broadcast channel and the many-to-one Gaussian

multiple access channel, the capacity of most Gaussian networks is unknown. The deterministic

channel model provides a way to make progress in this problem in two steps.

First apply the deterministic channel model and study the information flow in the determin-

istic networks. The deterministic channel model models the broadcasting and superposition

of wireless communications. The motivation for such channel model is that wireless networks

often operate in interference-limited regime where the noise power is small compared to sig-

nal powers. The deterministic model focuses more on the signal interactions rather than the

noise. For the deterministic networks, we have a complete characterization of the capacity for

the unicast and multicast cases which is a generalization of the max-flow min-cut theorem for

wireline networks.

Second apply the insights gained from the deterministic approach to find near-optimal

communication schemes for original Gaussian relay networks. Avestimehr, Diggavi and Tse

proved that in the noisy Gaussian network, an approximate max-flow min-cut result holds

where the approximation is within an additive constant universal over channel parameters but

only depends on the number of nodes in the networks. This is a strong result since none of

the existing relay strategies in the literature yield such a universal approximation for arbi-

trary networks. Avestimehr, Diggavi and Tse using the insights gained from the deterministic

networks proposed a quantize-and-forward scheme yielding such a universal approximation.

2.2 Network Flow Algorithms for Deterministic Wireless Networks

There is complete characterization of the capacity region for the deterministic networks

for unicast and multicast sessions. However the characterization itself doesn’t suggest any

efficient algorithms for finding the capacity or corresponding capacity-achieving transmission

schemes. An intuitive idea would be to enumerate all source-destination cuts and compare

their cut values but this leads to an algorithm with complexity growing exponentially with
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the size of the networks. So efficient algorithms for identifying the capacity and capacity

achieving transmission schemes is desirable. There are the following results on the network

flow algorithms for deterministic networks. The first algorithm by Amaudruz & Fragouli

(2009) and our algorithm both fall into the category of path augmentation algorithms and the

latter can be seen as an improved version of the former, we will introduce their algorithm in

details while for other algorithms on the same problem, the readers are referred to the reference

paper for more details.

2.2.1 Path Augmentation Algorithms for Wireless Deterministic Networks

The first efficient algorithm addressing the problem of finding unicast capacity for deter-

ministic networks is by Amaudruz & Fragouli (2009). They proposed a polynomial-time

algorithm for finding the unicast capacity of any given linear deterministic wireless network

by trying to identify the maximum number of linearly independent paths in the network using

the idea of path augmentation.

Amaudruz and Fragouli’s algorithm is basically a path augmentation algorithm which op-

erates in iterations and in each iteration tries to find an additional path in addition to already

found paths in previous iterations. The algorithm is a recursive algorithm and the basic oper-

ation is the exploration to a node in the network which is described below.

To explore a node A in the deterministic network, they sequentially examine all signal

levels xi, xi ∈ A and take the following actions:

1. If xi is already used by a path, do nothing.

2. If xi is not used, then examine each yj with (xi, yj) ∈ E as follows:

(a) If yj is used by some path, find a smallest set Lxi such that replacing each element

in this set with xi, there is still the same number of S-D paths in the network. Then

replace each element in the set with xi and try to find a path starting from the

replaced element.
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(b) If yj is not used, then determine the rank of the binary adjacency matrix for the

current layer where xi is. If the matrix is not full rank, do nothing, otherwise,

extend the current path to yj along edge (xi, yj). If A(yj) = D, then the algorithm

succeeds and returns one more S-D path. If it turns out that there is no path from

yj to D, then a φ function is called to rewire the connections in the current layer

where xi is to replace yj with an equivalent y′j such that A(yj) = A(y′j) and (x′i, y
′
j)

is used by some path.

The algorithm has a computational complexity bounded by O(M · |E| ·C5) where M is the

maximum number of nodes in one layer, E is the total number of edges in the network and C

is the unicast capacity of the underlying network. As will be seen later in Chapter 3, though

our algorithm and the algorithm by Amaudruz and Fragouli fall into the same category, our

algorithm enjoys much less computational complexity than the latter.

2.2.2 Other Combinatorial Algorithms for Wireless Deterministic Networks

Other efficient algorithms for addressing the same problem of finding unicast capacity of

deterministic networks include that by Yazdi & Savari (2009) and that by Goemans, etc.

(2009).

Yazdi & Savari (2009) developed a two-dimensional Rado-Hall transversal theorem for

block matrices and used the submodularity of the capacity of a cut to formulate the problem

as a linear program over the intersection of two polymatroids so as to solve the problem in

polynomial time. Their algorithm has a computational complexity bounded by O(L8 ·M12 ·

h3
0 +L ·M6 ·C ·h4

0), where L is the total number of layers in the layered deterministic network

and h0 is the maximum number of signal levels from all nodes in one layer. Refer to Yazdi &

Savari (2009) for more details.

Along the same line, Goemans, etc. (2009) has proposed another efficient algorithm

for tackling the same problem. First they formulate the deterministic networks as specific

instances of linking systems, a combinatorial structure with a tight connection to matroids so

that properties and algorithms available for matroids and linking systems can be extended to
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solve this problem. They prove the max-flow min-cut theorem and submodularity of cuts from

the linking system aspect. Finally, efficient algorithms for matroids intersection or matroids

partition is used to find a maximum flow or minimum cut in the network. The computational

complexity for this algorithm is bounded by O(L1.5 ·M3.5 logML) or L ·M3 · logM , which is

a strong polynomial time algorithm and would be much faster for large capacity deterministic

networks.

2.3 Efficiently Encodable Rate-Compatible LDPC (E2RC) Codes

A significant amount of research work has dealt with the construction and analysis of

punctured LDPC codes Kim, etc. (2009), Ha, etc. (2004 - 1), Ha, etc. (2004 - 2), Ha,

etc. (2006), Yazdani & Banihashemi (2004), Yue, etc. (2007). In this section we briefly

explain the construction introduced by Kim, etc. (2009) as our work is inspired by it. Let the

parity-check matrix of a systematic LDPC code be denoted

H = [H1|H2]

whereH1 denotes the sub-matrix corresponding to the information bits andH2 denotes the sub-

matrix corresponding to the parity bits. We say that a parity node in H2 is k-step recoverable

(or k−SR) if it can be recovered in exactly k iterations of iterative decoding assuming that all

the parity bits are punctured and all the information bits are unpunctured (Figure 4.2 shows

an example). Intuitively, a large number of low-SR nodes tend to reduce the required number

of decoding iterations in the high SNR regime and result in good puncturing performance.

Efficiently-Encodable Rate-Compatible (E2RC) codes have a linear-time encoder and have

good performance under puncturing for a wide variety of rates. In Kim, etc. (2009) the

submatrix H2 consists of exclusively degree-2 and degree-1 nodes. Moreover half the nodes in

H2 are 1−SR, one-fourth are 2−SR and so on1. The special structure of H2 for E2RC codes

results in good puncturing performance with a simple puncturing pattern. The puncturing

pattern is such that 1 − SR nodes should be punctured first and then the 2 − SR nodes and

so on depending upon the rate requirement.

1This is strictly true if the number of parity nodes is a power of two and approximately true otherwise.
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The design goal of E2RC codes is to obtain rate-compatible punctured codes that exhibit

good code performance across a wide range of code rates. E2RC codes are a class of systematic

irregular LDPC codes. Assuming a full-rank parity-check matrix, there are K columns corre-

sponding to information bits and M columns corresponding to parity bits, with K +M = N .

In the sequel the submatrix of the parity-check matrix corresponding to the K information

bits (H1) is referred to as systematic part and the submatrix corresponding to the parity bits

is referred to as non-systematic part (H2).

Define depth d as the number of different types of k-SR matrices that have degree-2 columns

in a parity-check matrix. Let the function γ(k) be the number of columns in the k-SR matrix

in a parity-check matrix. The construction of E2RC codes are briefly described below. The

readers are referred to Kim, etc. (2009) for details.

• Finding optimal degree distribution

This step is to find the optimal degree distribution for the desired mother code rate with

constraint that number of degree-2 check nodes is smaller than M.

• Parameter setting

For the given design parameter M , find out d and γ(k) to determine the exact structure

of the non-systematic part.

• Generating k-SR matrix

The j-th column of the k-SR matrix has the following sequence:

hk,j = Dj+Sk−1(1 +Dγ(k)), 1 ≤ k ≤ d, 0 ≤ j ≤ γ(k)− 1

= DM−1, k = d+ 1, 0 ≤ j ≤ γ(k)− 1

where Sk represents the sum of the number of columns in the submatrix formed by the

placing the 1-SR, 2-SR, and k-SR matrices next to each other and Di represents the

position of nonzero element in a column, i.e., i-th element of the column is nonzero,

where 0 ≤ i ≤M − 1.
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• Constructing matrix T as follows

T = [1-SR matrix|2-SR matrix|...|d-SR matrix]

• Forming matrix H2

By adding a degree-1 node to T , that is,

H2 = [T |(d+ 1)-SR matrix]

• Edge construction

Construct H1 by matching the degree-distribution obtained in step 1 as close as possible.

• Construct matrix H

H = [H1|H2]

The E2RC codes has the following desired features:

• Degree-2 variable nodes are assigned to non-systematic bits only,

• No-cycles involve only degree-2 variable nodes,

Moreover it is possible to avoid cycles of length four in E2RC codes by making use of the

algorithms in Hu, etc. (2001), Tian, etc. (2004), Ramamoorthy & Wesel (2004) and Weng,

etc. (2004).

The E2RC codes designed above can be encoded in linear time which is another desirable

feature in practice.

In the original construction of E2RC codes Kim, etc. (2009), an optimal degree distribution

pair (λ, ρ) for unstructured irregular LDPC codes is used for constructing H = [H1|H2] of

mother code. H2 is constructed according to designed structure and H1 is constructed by

attempting to match the chosen pair (λ, ρ), i.e., the structure of H2 is not taken into account

in designing the optimal degree distribution. In Chapter 4, we design new classes of E2RC-like

codes, where the structure of H2 is taken into account in the design process. We will show that

families of E2RC-like codes are designed, exhibiting uniformly good code performance across

a wide range of code rates.
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2.4 Density Evolution

Density evolution developed by Richardson, etc. (2001), Richardson & Urbanke (2001),

is a numerical technique for analyzing the asymptotic performance of modern codes employing

iterative decoders. The asymptotic performance of a code is indicated by a threshold value of

the channel parameter. Any channel with a worse channel parameter cannot expect to have

zero-error approaching transmission performance with the given code. While any channel with

a better channel parameter can expect to have zero-error approaching transmission perfor-

mance with the given code when the code length goes to infinity and the number of iterative

decoding iterations goes to infinity.

Density evolution refers to the evolution of the probability density function of the various

quantities passed around in the code’s Tanner graph during its decoding process. Using density

evolution, Richardson, etc. (2001) designed an irregular LDPC code whose asymptotic per-

formance is within 0.06dB from capacity and Chung (2000) designed an irregular LDPC code

whose asymptotic performance is within 0.0045 dB from capacity on a binari-input AWGN

channel.

In the Appendix B of Richardson & Urbanke (2008), there is a detailed description of

efficient implementation of density evolution. In Appendix 5, we give our implementation of

the density evolution for computing the decoding threshold of any given protographs.

2.5 EXtrinsic Information Transfer Chart (EXIT Chart) Overview

The convergence behavior of iterative decoders of LDPC codes can be evaluated by track-

ing the probability distributions of extrinsic log-likelihood ratios (Gallager (1963)). Density

evolution technique is developed for such purpose. EXIT chart analysis can be viewed as a

sub-category of density evolution techniques, developed by Brink (2001).

EXIT chart describes the flow of extrinsic information through the soft in/soft out con-

stituent decoders in terms of mutual information. The exchange of extrinsic information is

highly visualized as a decoding trajectory in the chart. The extrinsic log-likelihood value is

the a posteriori log-likelihood value minus the a priori log-likelihood value. An EXIT chart
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describes the relationship between mutual information IA and IE , where IA is the average mu-

tual information between the bits on the decoder graph edges and the a priori log-likelihood

values and IE is the average mutual information between the bits on the graph edges and the

extrinsic log-likelihood values.

For an irregular binary LDPC code transmitted over binary AWGN channel, the EXIT

function of a degree dv variable node is:

IE,V (IA, dv, σ
2
ch, R) = J(

√
(dv − 1)[J−1(IA)]2 + σ2

ch)

the EXIT function of a degree dc check node is:

IE,c(IA, dc) = 1− J(
√

(dc − 1)J−1(1− IA))

where σ2
ch = 8R · SNR.
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CHAPTER 3. IMPROVED COMBINATORIAL ALGORITHMS FOR

WIRELESS INFORMATION FLOW

The work of Avestimehr, etc. (2007 - 1) has recently proposed a deterministic model for

wireless networks and characterized the unicast capacity C of such networks as the minimum

rank of the adjacency matrices describing all possible source-destination cuts. Amaudruz and

Fragouli first proposed a polynomial-time algorithm for finding the unicast capacity of a linear

deterministic wireless network in their 2009 paper. In this work, we improve upon Amaudruz

and Fragouli’s work and further reduce the computational complexity of the algorithm by fully

exploring the useful combinatorial features intrinsic in the problem. Our improvement applies

generally with any size of finite fields associated with the channel model. Comparing with

other algorithms on solving the same problem, our improved algorithm is very competitive in

terms of complexity.

3.1 Introduction

The deterministic channel model for wireless networks proposed by Avestimehr, etc.

(2007 - 1), Avestimehr, etc. (2007 - 2) (referred to as ADT model thereafter) has been a

useful tool for understanding the fundamental limitations of information transfer in wireless

networks. The ADT model captures two main features, the broadcasting and interference, that

are present in wireless networks. It converts the wireless networks into deterministic networks,

by making appropriate assumptions, that in turn lead to approximate capacity results. The

model is called the linear finite-field deterministic channel model in Avestimehr, etc. (2007 -

1), Avestimehr, etc. (2007 - 2). We refer to it as the ADT model and denote the finite field

of size p associated with the ADT model as Fp in this chapter.
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In Avestimehr, etc. (2007 - 1), Avestimehr, etc. (2007 - 2), the unicast (i.e., with one

source S and one destination D) capacity C of any linear deterministic wireless relay network

was characterized as the minimum rank of the adjacency matrices describing all its S-D cuts.

An exhaustive search for finding the minimum rank of the adjacency matrix for all S-D cuts

results in an algorithm with complexity exponential in the size of the network.

Amaudruz & Fragouli (2009) were the first to propose a polynomial-time algorithm for

finding the unicast capacity of a linear deterministic wireless relay network (see also Ebrahimi

& Fragouli (2009)). In this work, we improve upon Amaudruz and Fragouli’s work and

further reduce the computational complexity of the algorithm by fully exploring the useful

combinatorial features intrinsic in the problem. Our improvement applies generally with any

size of finite fields Fp associated with the ADT model. Comparing with other algorithms

on solving the same problem by Yazdi & Savari (2009) and by Goemans, etc. (2009), our

improved algorithm is very competitive in terms of complexity.

3.2 Notations and Definitions

In Avestimehr, etc. (2007 - 2), it is shown that an arbitrary deterministic wireless network

can be expanded over time to generate an asymptotically equivalent (in terms of transmission

rate) layered network. Therefore, we focus on layered deterministic networks.

Let G = (V, E) denote a layered deterministic wireless relay network where V represents the

set of nodes in the original wireless relay network, each node in V has several different levels of

inputs and outputs and E is the set of directed edges going from one input of some node to one

output of some other node. For example, Fig. 3.1(a) gives a graph representation of a layered

deterministic wireless relay network where each node is labeled with a capital letter, all inputs

(outputs) from nodes are labeled as {xi} ({yj}), 1 ≤ i, j ≤ 8. In the layered network G, all

paths from the source node S to the destination node D have equal lengths (Avestimehr, etc.

(2007 - 2)). The set of nodes V are divided into different layers according to their distances

to S. The first layer consists of S and the last layer consists of D. Let A(xi) (or A(yj)) denote

the node where an input xi (or an output yj) belongs to. Let L(A) (or L(xi), L(yj)) denote
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the layer number where node A (or xi, yj) belongs to. Denote M as the maximum number

of nodes in each layer, L the total number of layers and d the maximum number of outgoing

edges from any input in any node in the network G in this chapter.

A cut Ω in G is a partition of the nodes V into two disjoint sets Ω and Ωc such that S ∈ Ω

and D ∈ Ωc. A cut is called a layer cut if all edges across the cut are emanating from nodes

from the same layer, otherwise it is called a cross-layer cut. An edge (xi, yj) ∈ E belongs to

layer cut l if L(xi) = l.

The adjacency matrix T (x,y) for the sets of inputs x = {x1, x2, ...xm} and of outputs

y = {y1, y2, ...yn} in G is a matrix of size m×n with binary {0, 1} entries. The rows correspond

to {xi ∈ x} and columns corresponding to {yi ∈ y} and T (i, j) = 1 if (xi, yj) ∈ E . The

adjacency matrix T (E) for a set of edges, E, is the adjacency matrix for the sets of their

inputs and their outputs.

A set of edges, E, are said to be linearly independent (LI) if rank(T (E)) = |E| (where the

rank is computed over GF(2)), otherwise they are said to be linearly dependent (LD). In G,

each S-D path is of length L − 1 and crosses each layer cut exactly once. A set of S-D paths

are said to be LI if the subsets of their edges crossing each layer cut are LI, otherwise they are

said to be LD. In this work, we will consider a slightly more general adjacency matrix, where

the non-zero entries can be from a finite field Fp, and the rank is also computed over Fp. Of

course, all our results will also apply to the binary field case.

Let EΩ be the set of edges crossing the cut Ω in G. The cut value of Ω is defined as

rank(T (EΩ)), which based on the definition equals the maximum number of LI edges in EΩ.

Note that the cut value defined above is different than that for regular graphs (which is just

the number of edges crossing the cut). It is proved Avestimehr, etc. (2007 - 1), Avestimehr,

etc. (2007 - 2) that the unicast capacity of a linear deterministic wireless relay network is

equal to the minimum cut value among all S-D cuts.
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3.3 Improved Unicast Algorithm

In this section we outline certain improvements that can be made to the algorithm of

Amaudruz & Fragouli (2009). In particular, we elaborate on several useful combinatorial

aspects that allow us to reduce the overall time complexity. Moreover, these improvements also

fix certain issues with the original algorithm by Amaudruz & Fragouli (2009). As mentioned

previously, our proposed improvements apply over arbitrary finite fields.

3.3.1 Improving the Original Algorithm

The main idea in Amaudruz & Fragouli (2009) is to find path Pk+1 in iteration k + 1

while maintaining linear independence among all S-D paths in P. In this process, previous

paths may be rewired. However, there are cases when the original algorithm may fail to find

the exact unicast capacity. We illustrate this using the following examples. We point out that

these issues seem to have been resolved in Ebrahimi & Fragouli (2009). However, our proposed

algorithm has several differences from Ebrahimi & Fragouli (2009) as discussed in Section 3.4.

3.3.1.1 Improved backward rewiring

We use the example in Fig. 3.1 to show that there are cases where the φ-function above is

insufficient, causing failures of the original algorithm. Then we illustrate how it can be fixed

by introducing an improved backward rewiring mechanism.

In Fig. 3.1(a), three LI S-D paths with color red, green and blue are found in the first

three iterations of the algorithm. Let’s see how the algorithm goes in iteration four. Let’s say

the algorithm has extended P4 along the purple path to y20. The call EA(G,P,M, N) fails

since the only input x24 of N is used by paths in P. So φ-function is called on y19 and then

node I is explored in EA(G,P,M, I), but since there is only one path from all inputs of I to

D, EA(G,P,M, I) fails, and finally the algorithm returns false and reports unicast capacity

of 3. However, the unicast capacity of the network is 4 and a capacity-achieving transmission

scheme is given by the four S-D paths in Fig. 3.1(b) in different colors.



www.manaraa.com

35

We propose the following improved backward rewiring mechanism to fix the problem above

and to replace the original φ-function. Let A denote a node in the network (not to be confused

with A in the figure).

First, the backward rewiring is allowed on every node A whenever it is explored in finding

Pk+1.

Second, the backward rewiring on node A includes the following operations. Let L(A) =

l+ 1. For any output y of A with y ∈ U ly and y is used by a path in P at the beginning of the

current iteration (if such y exists),

• Find one x ∈ U lx such that T (U lx − x, U ly − y) has full rank,

• Then rematch (U lx−x, U ly− y) to generate a new set of k LI used path edges in layer cut

l and

• Finally try to complete the partial path from A(x).

Lemma 6 guarantees that for a given y ∈ U ly there is always one such x and also a set of

edges1

Py→x = {(x1, y1 = y), (x1, y2), (x2, y2), ...(xm′−1, ym′), (xm′ = x, ym′)} = {e1, e2, ..., e2m′−1}

with (xi, yi), 1 ≤ i ≤ m′ being edges used by P, which can be found with complexity O(k3)

and O(k2) respectively. Along the alternating path Py→x, the rematching of the used path

edges in layer cut l can be done easily as follows:

U l = U l − e1 + e2 − e3 + ...− e2m′−1

Consider applying our improved backward rewiring in the example in Fig. 3.1. It happens

on the outputs of nodes N and I. Its application to N is straightforward. Let’s look at its

application at the output y14 of node I. First it finds x6 ∈ U2
x with T (U2

x −x6, U
2
y −y14) having

full rank and the alternating path

Py14→x6 = {(x7, y14), (x7, y13), (x6, y13)}
1We use the notation Py→x since this set of edges can be interpreted as an alternating path, as we show in

Section 3.3.2
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. The rematching is done by

U2 = U2 − (x7, y14) + (x7, y13)− (x6, y13)

. Then node B = A(x6) is explored. Finally the improved algorithm returns four LI S-D paths

in Fig. 3.1(b) as expected.

(a) (b)

Figure 3.1 Illustrating example for improved backward rewiring

3.3.1.2 Improved same-layer rewiring

We use the example in Fig. 3.2 to show that the same-layer rewiring in original algorithm is

insufficient. Suppose the red S-D path is found in the first iteration. In iteration two, suppose

that the algorithm first extends P2 along the green path to x4. The same-layer rewiring from

x4 will mark x3. Since T (x3 + x4, y5 + y6) is not full rank, the algorithm fails to complete P2

along the green path. It continues to extend P2 along the blue path to x5. Since x3 is marked,

the same-layer rewiring from x5 won’t be applied on x3 and the call EA(G,P,M, C) fails. The

algorithm finally returns false and reports unicast capacity of 1. However, the network has a

unicast capacity of 2 indicated by the two paths in Fig. 3.2(b).

We develop our improved same-layer rewiring to fix the above problem as follows. First,

an input xk should not be blocked from being visited via same-layer rewiring from any input

xi just because it has been visited via same-layer rewiring from another input xj . Consider
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the example in Fig. 3.2. If we allow x3 to be visited via same-layer rewiring from x5, the

algorithm may succeed in finding two LI paths as indicated in Fig. 3.2(b). However, this needs

to be done carefully. Consider again the example in Fig. 3.2. If we allow same-layer rewirings

from all inputs, then we might run into an infinite loop of going from x5 to x3 via same-layer

rewiring and going from x3 to x5 via same-layer rewiring and so on.

The goal of a same-layer rewiring operation in iteration k+ 1 is to ensure that every input,

which allows the algorithm to maintain k LI S-D paths and can further extend the current

partial path, has the opportunity of being explored, while ensuring that we do not enter an

infinite loop. In this work we achieve this by using a pair of labels of each node.

Figure 3.2 Illustrating example for improved same-layer rewiring

Each node has a label that takes values - “explored” or “unexplored”. The other label is a

type that takes values 1, 2. We initialize the type of every node to be 1 at the beginning of the

iteration. A type 1 input is allowed to initiate same-layer rewirings. An input that is explored

via a same-layer rewiring from a type 1 input xi is assigned as type 2. A type 2 input is not

allowed to initiate same-layer rewirings to avoid the possibility of infinite loop. If an input x

(of either type) is explored via a backward rewiring, it is re-assigned as type 1 (since U lx and

U ly change since last time x was explored).

Consider applying our improved same-layer rewiring in the example in Fig. 3.2. x3 is first

visited via a same-layer rewiring from x4 (of type 1) when it is assigned as type 2. Later on x3

is revisited via a same-layer rewiring from x5 (of type 1) when it is assigned as type 2 again, so

it won’t initiate a same-layer rewiring to x5, instead it only looks for a possible forward move

which happens along the edge (x3, y5) (and the improved algorithm finally succeeds in finding

2 LI paths as in Fig. 3.2(b)).
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3.3.2 Useful Combinatorial Features

In this subsection, several useful combinatorial features intrinsic in the problem are intro-

duced which are used later in our improved algorithm to reduce the complexity.

In the following, we define a set Λxi similar to but more general than Lxi in the original

algorithm by Amaudruz and Fragouli. Λxi applies to any size of finite field Fp associated with

the ADT model for the network.

Definition 1 Define Λxi as a subset of U
L(xi)
x when xi is explored such that

T (xi, U
L(xi)
y ) =

∑
xj∈Λxi

ajxi · T (xj , U
L(xi)
y ). (3.1)

where {axi} are non-zero coefficients from Fp.

Lemma 4 Λxi and the set {axi} are unique and can be found with complexity O(k3) in iteration

k + 1.

Since T (U
L(xi)
x , U

L(xi)
y ) has full-rank, Λxi and the set {axi} are unique and can be found

with complexity O(k3) by using Gaussian elimination.

Let Gxi denote the bipartite graph containing U
L(xi)
x ∪UL(xi)

y when xi is explored in iteration

k + 1 and G+
xi denote the bipartite graph containing {xi} ∪ UL(xi)

x ∪ UL(xi)
y .

In the following, we refer to an alternating path as a path in which the edges belong

alternatively to the set of used edges and the set of unused edges.

Lemma 5 There is an alternating path from xi to any xj ∈ Λxi in the graph G+
xi of the form

Pxi→xj = {(xi, y1), (x1, y1), (x1, y2), (x2, y2), ...(xm−1, ym), (xm = xj , ym)}

with (xq, yq), 1 ≤ q ≤ m being edges used by P. The complexity for finding these |Λxi | paths is

bounded by O(k2) in iteration k + 1.

Proof
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Let L(xi) = l. Given

rank(T (U lx, U
l
y)) = k

for any xj ∈ Λxi ,

rank(T (U lx, U
l
y)) = rank(T (U lx + xi − xj , U ly)) = k

where k = |P| in iteration k + 1. Introduce an auxiliary output y′ and an edge (xj , y
′). It’s

easy to see that

rank(T (U lx + xi, U
l
y + y′)) = k + 1

Let G++
xi denote the bipartite graph containing nodes {xi} ∪ U lx ∪ U ly ∪ {y′}.

Given T (U lx, U
l
y) has full rank, we know that the polynomial of the determinant of the

Edmonds matrix of the bipartite graph Gxi is not identically zero, so there is a size k perfect

matching in Gxi Motwani & Raghavan (1995), M1 = U l giving such a matching. Similarly

given

rank(T (U lx + xi, U
l
y + y′)) = k + 1

there is a size k+ 1 perfect matching in G++
xi . By Berge’s Lemma Berge (1957), we know that

there is an alternating path, relative to the matching M1, starting from an unused input xi to

an unused output y′, alternating between edges not in the current matching M1 and edges in

the current matching M1, i.e., there is a path

Pxi→y′ = {(xi, y1), (x1, y1), (x1, y2), (x2, y2), ...(xm−1, ym), (xm, ym), (xm = xj , y
′)}

with (xq, yq), 1 ≤ q ≤ m being edges in M1. So we proved that there is an alternating path

Pxi→xj = {(xi, y1), (x1, y1), (x1, y2), (x2, y2), ...(xm−1, ym), (xm = xj , ym)}

with (xq, yq), 1 ≤ q ≤ m being edges in M1 = U l.

Since the number of nodes in G+
xi is bounded by O(k), the number of its edges is bounded

by O(k2). Finding Pxi→xj for all xj ∈ Λxi in G+
xi can be done with complexity O(k2) with some

well-known graph traversal algorithms, like breadth-first search Cormen, etc. (2001).

Lemma 6 Let

rank(T (U lx, U
l
y)) = |U lx| = |U ly| = k + 1
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Given any y ∈ U ly, there exists at least one x ∈ U lx, such that

rank(T (U lx − x, U ly − y)) = k

Moreover there is an alternating path from y to x of the form

Py→x = {(x1, y1 = y), (x1, y2), (x2, y2), (x2, y3), ...(xm′−1, ym′), (xm′ = x, ym′)}

with (xq, yq), 1 ≤ q ≤ m′ being edges in U l. The complexity of finding one such x is bounded

by O(k3) and the complexity of finding path Py→x is bounded by O(k2).

Proof

Given

rank(T (U lx, U
l
y)) = |U lx| = |U ly| = k + 1

the determinant of T (U l), |T (U l)|, is nonzero. Consider the expansion of |T (U l)| along the

column corresponding to y using Laplace expansion, there must be a sub-matrix of T (U l) with

nonzero determinant of size k × k excluding the column corresponding to y and some row

(corresponding to x), i.e.,

rank(T (U lx − x, U ly − y)) = k

Introduce an auxiliary input x′ and output y′ and edge (x′, y), (x, y′). Let

T1 = T (U lx − x, U ly − y)

Consider

T2 = T (U lx, U
l
y − y + y′)

Compared with T1, T2 has a new column corresponding to y′ with a unique non-zero entry on

the new row x, so rank(T2) = k + 1 given that rank(T1) = k. Consider

T3 = T (U lx + x′, U ly + y′)

Compared with T2, T3 has a new row corresponding to x′ with a unique non-zero entry on the

new column y, so rank(T3) = k + 2 given that rank(T2) = k + 1. Using a similar argument as
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in Lemma 5, we conclude that there is an alternating path, relative to the matching M2 = U l,

starting from an unused input x′ to an unused output y′, alternating between edges not in the

current matching M2 and edges in the current matching M2, i.e., there is a path

Px′→y′ = {(x′, y1 = y), (x1, y1), (x1, y2), (x2, y2), ...(xm′−1, ym′), (xm′ , ym′), (xm′ = x, y′)}

with (xq, yq), 1 ≤ q ≤ m′ being edges in M2. So we proved that there is a path

Py→x = {(x1, y1 = y), (x1, y2), (x2, y2), (x2, y3), ...(xm′−1, ym′), (xm′ = x, ym′)}

with (xq, yq), 1 ≤ q ≤ m′ being edges in U l.

Finding one such x can be accomplished by performing Gaussian elimination on the matrix

T (U lx, U
l
y − y) with complexity bounded by O(k3). Using a similar argument as in Lemma 5,

the computational complexity of finding path Py→x is bounded by O(k2).

Lemma 7 develops an equivalent but computationally simple method to speed up the rank

computation when xi is explored given Λxi and the set of associated coefficients {axi}.

Lemma 7 Let T (U lx, U
l
y) have full rank k. The rank computation for checking rank(T (U lx +

xi, U
l
y + y)) = k or k + 1 for any xi 6∈ U lx, L(xi) = l, y 6∈ U ly and (xi, y) ∈ E is equivalent to

checking

T (xi, y) = or 6=
∑

xj∈Λxi

ajxi · T (xj , y)

with complexity bounded by O(k) given Λxi and {axi}.

Proof

Given T (U lx, U
l
y) has full rank k,

rank(T (U lx + xi, U
l
y + y)) = k

is equivalent to that

T (xi, U
l
y + y) =

∑
xj∈Λ′xi

aj
x′i
· T (xj , U

l
y + y)
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for some Λ′xi ⊆ U
l
x and {ax′i}. Since Λxi ⊆ U lx and the set {axi} are unique for which

T (xi, U
l
y) =

∑
xj∈Λxi

ajxi · T (xj , U
l
y)

holds (by Lemma 4), there must be Λ′xi = Λxi and {axi} = {ax′i}. This leads to that

rank(T (U lx + xi, U
l
y + y)) = k

is equivalent to

T (xi, y) =
∑

xj∈Λxi

ajxi · T (xj , y)

Lemma 8 Let x′ ∈ Λxi. If x′ is explored via a same-layer rewiring from xi,

Λx′ = Λxi + xi − x′

and the set of associated coefficients {ax′} can be computed from {axi} with complexity O(k)

in iteration k + 1.

Proof

Let L(xi) = l. Note that when x′ is explored via a same-layer rewiring from xi, U
l
x is

updated as U lx − x′ + xi, U
l
y is unchanged and T (U lx − x′ + xi, U

l
y) has full rank. Based on

definition,

T (xi, U
l
y) =

∑
xj∈Λxi\x′

ajxi · T (xj , U
l
y) + a′xi · T (x′, U ly). (3.2)

where {axi} are non-zero coefficients from Fp. So we have

T (x′, U ly) =
∑

xj∈Λxi\x′

ajxi
a′xi
· T (xj , U

l
y)−

1

a′xi
· T (xi, U

l
y). (3.3)

Since T (U lx−x′+xi, U
l
y) has full rank, equation (3.3) is the unique way that the row T (x′, U ly)

can be expressed as a linear combination of the rows in this matrix. So we conclude Λx′ =

Λxi + xi − x′ and the set of associated coefficients {ax′} can be computed from {axi} with

complexity O(k). Note that in iteration k + 1, |Λxi | ≤ |U lx| = k.
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3.3.3 Reducing the Complexity and the Overall Algorithm

As mentioned before, the computational parts of algorithm Amaudruz & Fragouli (2009)

include the FindL (finding Lxi), Match (update U after a same-layer rewiring from xi) and

rank computation functions. Now we explain how the combinatorial features from Section

3.3.2 can be used to further reduce the complexity of the unicast algorithm.

Lemma 4 shows that Λxi and the set of associated coefficients {axi} for any type 1 input

xi can be computed with complexity O(k3) in iteration k+ 1. Lemma 8 tells that for any type

2 input x′, x′ ∈ Λxi , that is explored via a same-layer rewiring from a type 1 input xi, Λx′ and

the set of associated coefficients {ax′} can be computed with complexity O(k) given Λxi and

the set of associated coefficients {axi}.

Second, based on Lemma 5, the matching or updating of U after same-layer rewirings from

any type 1 input xi can be done with complexity O(k2) in iteration k+ 1 as follows. First find

all |Λxi | paths Pxi→xj , ∀xj ∈ Λxi with complexity O(k2) for xi. Let

Pxi→xj = {(xi, y1), (x1, y1), (x1, y2), ...(xm−1, ym), (xm = xj , ym)} = {e1, e2, ..., e2m}

with (xq, yq), 1 ≤ q ≤ m being edges used by P for any xj ∈ Λxi . Then updating of UL(xi)

after a same-layer rewiring from xi to xj can be done by

UL(xi) ← UL(xi) + e1 − e2 + ...− e2m

Third, Lemma 7 tells that the rank computation in a forward move from any xi (either of

type 1 or of type 2), xi 6∈ U lx, L(xi) = l, for checking

rank(T (U lx + xi, U
l
y + y)) = k or k + 1

for any y 6∈ U ly and (xi, y) ∈ E is equivalent to checking

T (xi, y) =
∑

xj∈Λxi

ajxi · T (xj , y) or not

with complexity bounded by O(k) given Λxi and {axi} in iteration k + 1.

Finally, as mentioned before, in our improved backward rewiring from an output y, to find

one x with T (U lx − x, U ly − y) having full rank and to rematch (U lx − x, U ly − y) can be done

with complexity O(k3) in iteration k + 1 guaranteed by Lemma 6.
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Table 3.1 gives an overall description of our improved unicast algorithm which is imple-

mented in a function EA(G,P,M, A) where all inputs are the same as in the original algorithm.

A complete software implementation of our improved unicast algorithm can be found in the

author’s homepage – http://www.ece.iastate.edu/~cshi.

3.4 Proof of Correctness

Theorem 9 Our algorithm terminates in finite time. The total computational complexity of

our algorithm is bounded by

O(|Vx|C4 + d|Vx|C3)

if our algorithm stops after finding C linearly independent S-D paths in the network, where

|Vx| is the total number of inputs, C is the unicast capacity and d is the maximum number of

outgoing edges from any input.

Proof

Our algorithm runs in iterations and each iteration of the algorithm consists of exploring

some nodes in the network by visiting some subset of the inputs and outputs of each node. We

prove that our algorithm terminates in finite time by proving that it stops in finite iterations

and that in each iteration it explores a finite number of inputs and outputs. In Theorem

11 we prove that our algorithm stops after C iterations. Here we prove the total number of

inputs/outputs being visited in each iteration of the algorithm is finite.

Note that only unexplored node or input/output may be explored by the algorithm and

that once a node or input/output is explored, it’s labeled as explored (byM) and not allowed

to be explored again unless it is relabeled as unexplored again. Let k1 and k2 be the total

number of inputs being labeled as unexplored type 1 and type 2 inputs respectively and let

k3 be the total number of outputs being labeled as unexplored outputs which is used by some

path found in previous iterations.

Claim 1 k3 ≤ |Vx|.

http://www.ece.iastate.edu/~cshi
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Table 3.1 Pseudo-code for our improved algorithm

{(T,F)}=EA(G,P,M, A)

M(A) = T,L(A) = l

U l = {used edges in layer cut l}, U lx = {xi ∈ U l}, U ly = {yj ∈ U l}
for any x : A(x) = A, x 6∈ U lx,M(x) = F,GetType(x) = 2

M(x) = T

for any y : (x, y) ∈ E , y 6∈ U ly,M(A(y)) = F //forward move

if T (x, y) 6=
∑

xj∈Λx
ajx · T (xj , y)

Update(P);U l ← U l + e

if A(y) = D, return (T)

else if EA(G,P,M,A(y)) = T, return(T)

U l ← U l − e; Restore(P)

for any x : A(x) = A, x 6∈ U lx,M(x) = F,GetType(x) = 1

M(x) = T

Compute Λx and the set of coefficients {ax}
for any y : (x, y) ∈ E , y 6∈ U ly,M(A(y)) = F //forward move

if T (x, y) 6=
∑

xj∈Λx
ajx · T (xj , y)

Update(P);U l ← U l + e

if A(y) = D, return (T)

else if EA(G,P,M,A(y)) = T, return(T)

U l ← U l − e; Restore(P)

Find all paths Px→xj for all ∀xj ∈ Λx
for any xj : xj ∈ Λx with Px→xj = {e1, e2, ...e2m} =

{(x, y1), (x1, y1), (x1, y2), ...(xm = xj , ym)} //same-layer rewiring

M(xj) = F ; SetType(xj , 2);

Λxj = Λx − xj + x

compute {axj} based on {ax} according to Lemma 8

Update(P);U l ← U l + e1 − e2 + ...+ e2m−1 − e2m

if EA(G,P,M,A(xj)) = T, return(T)

U l ← U l − e1 + e2 − ...− e2m−1 + e2m; Restore(P)

for any y : A(y) = A, y ∈ U l−1
y ,M(y) = F

and y is used by P at the beginning of the iteration //backward rewiring

M(y) = T

find one x ∈ U l−1
x with T (U l−1

x − x, U l−1
y − y) having full rank

and find Py→x = {e1, e2, ...e2m′−1}
= {(x1, y1 = y), (x1, y2), (x2, y2), ...(xm′ = x, ym′)}
M(x) = F,SetType(x, 1)

Update(P);U l−1 ← U l−1 − e1 + e2 − ...− e2m′−1

If EA(G,P,M,A(x)) = T, return (T)

U l−1 ← U l−1 + e1 − e2 + ...+ e2m′−1; Restore(P)

return (F)
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Proof

All outputs are labeled unexplored at the beginning of each iteration. After an output is

explored, it’s labeled as explored and never relabeled as unexplored. Moveover given the total

number of outputs used by paths found in previous iterations is no more than |Vy| and |Vx|,

k3 ≤ |Vx|.

Since backward rewiring only happens on unexplored outputs used by paths found in previous

iterations and labels the outputs as explored afterwards, the total number of backward rewiring

is no more than k3 ≤ |Vx|.

Claim 2 k1 ≤ 2|Vx|.

Proof

All inputs in Vx are labeled as unexplored type 1 inputs at the beginning of each iteration.

An input is relabeled as unexplored type 1 input only after a backward rewiring and we

conclude above that the total number of backward rewiring is bounded by |Vx|, so the total

number of inputs being relabeled as unexplored type 1 inputs is bounded by |Vx|. Therefore

the total number of inputs being labeled as unexplored type 1 inputs is bounded by 2|Vx|, that

is, k1 ≤ 2|Vx|.

Claim 3 k2 ≤ 2(k − 1)|Vx|.

Proof

An input is labeled as unexplored type 2 input only after a same-layer rewiring, so we can

prove k2 ≤ 2(k − 1)|Vx| by proving that the total number of same-layer rewirings is bounded

by 2(k − 1)|Vx|. A same-layer rewiring only starts from some type 1 input being explored.

The total number of type 1 inputs explored by our algorithm in iteration k is bounded by

k1 ≤ 2|Vx|. When a type 1 input x is explored, the total number of same-layer rewirings that
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starts from x is bounded by |Λx| ≤ (k − 1) in iteration k. Therefore the total number of

same-layer rewirings is bounded by 2(k − 1)|Vx|, which leads to k2 ≤ 2(k − 1)|Vx|.

The total number of inputs (outputs) explored by our algorithm in iteration k is no more

than k1 + k2 (k3), which is limited by 2k|Vx| (|Vx|). So we conclude that the total number of

inputs/outputs being visited in each iteration of the algorithm is finite. Together with Theorem

11, we proved that our algorithm terminates in finite time.

Now let’s consider the computational complexity of our algorithm.

We proved above that in iteration k the total number of type 1, type 2 inputs and outputs

explored by our algorithm is bounded by 2|Vx|, 2(k − 1)|Vx| and |Vx| respectively. The worst

case in computation in iteration k are no more than:

• For each type 1 input xi, compute Λxi and {axi} with complexity O(k3) (Lemma 4) and

find all paths Pxi→xj for ∀xj ∈ Λxi with complexity O(k2) (Lemma 5),

• For each type 2 input xj , compute Λxj and {axj} with complexity O(k) (Lemma 8),

• For each type 1 or type 2 input x, compute rank(T (U lx + x, U ly + y)) for any y 6∈ U ly,

(x, y) ∈ E with complexity O(k) given Λx and {ax} (Lemma 7) and for any x, the total

number of such y is no larger than d and

• In each backward rewiring from a certain y, find one x with T (U lx−x, U ly−y) having full

rank and rematch (U lx− x, U ly − y) with complexity O(k3) (Lemma 6). Note that k ≤ C.

It’s obvious that the total complexity of our improved algorithm is bounded by

O(|Vx|C4 + d|Vx|C3)

Table 3.2 lists the comparison results between different algorithms for finding the unicast

capacity of linear deterministic wireless relay networks, specially in their complexity.

We note that the issues with the original algorithm Amaudruz & Fragouli (2009) mentioned

in Section 3.3.1 have been fixed in Ebrahimi & Fragouli (2009). The main difference between

our improved algorithm and the algorithm in Ebrahimi & Fragouli (2009) is that our improved
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Table 3.2 Comparison of algorithm complexity

Algorithm Complexity∗ Notes

Amaudruz & Fragouli (2009) O(M |E|C5) Always higher than ours

Ebrahimi & Fragouli (2009) O(d|Vx|C5 + |Vy|C5) especially when C is large

Yazdi & Savari (2009) O(L8M12h3
0 + LM6Ch4

0) Always higher than ours, especially

when M or L is large

Goemans, etc. (2009) O(L1.5M3.5 log(ML)) or

O(LM3 logM)

Straightforward comparison is not

possible. Goemans, etc. (2009)

will have lower complexity if C is

much larger than M

Our work O(|Vx|C4 + d|Vx|C3) -

∗ Denote C as the unicast capacity, M the maximum number of nodes in each layer, L the total

number of layers, d the maximum number of inputs of any node, h0 the maximum number of

inputs/outputs at any layer, E the total number of edges, |Vx| the total number of inputs and |Vy|
the total number of outputs. Note that M ≥ d (since by definition each input can have at most

one connection to each node in the next layer), |E| ≥ |Vx| (because of broadcasting) and h0 ≥ C

(based on definition).

algorithm utilizes those useful combinatorial features intrinsic in the problem described in

Section 3.3.2 which lead to reduced complexity. The other difference comes from the same-

layer rewiring and backward rewiring. In Ebrahimi & Fragouli (2009), the same-layer rewiring

starts on each input at most once (using the ML indicator function) while our algorithm allows

multiple same-layer rewirings starting from certain inputs (that is, if an input is explored via

a backward rewiring, it is reassigned as unexplored type 1 input and allows to initiate same-

layer rewiring again). In Ebrahimi & Fragouli (2009), the backward rewiring (implemented in

φ-function there) allows exploration on every xk ∈ Ux such that the resulting adjacency matrix

of used path edges still remains full rank while our algorithm only finds one such xk ∈ Ux and

explores it. Note that it can be verified that the combined effects of the different same-layer

rewiring and backward rewiring in two algorithms are the same.

The following lemma is useful in the proof of correctness for the improved algorithm.

Let

Y K+1
xj ,fr

= {y : y 6∈ U iy and rank(T (U ix + xj , U
i
y + y)) = K + 1
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when xj is explored in iteration K + 1} with L(xj) = i.

Lemma 10 In the last iteration K + 1 of our algorithm when no more S-D path is found, all

A(xk) with xk ∈ Λxj and all A(y) with y ∈ Y K+1
xj ,fr

must have been explored before our algorithm

returns if xj has ever been explored.

Proof

We first prove that all A(xk) with xk ∈ Λxj must have been explored before our algorithm

returns if xj has ever been explored. Since there is no more S-D path exists in iteration K+ 1,

all admissible moves will be tried. It follows that if any xj of type 1 has ever been explored,

each A(xk) with xk ∈ Λxj will be explored by following a same-layer rewiring along the path

Pxj→xk . For any xi of type 2 being explored right after a same-layer rewiring along the path

Pxj→xi starting from some xj of type 1, we know that

Λxi = Λxj + xj − xi

So if all A(xk) with xk ∈ Λxj are explored, all A(x′k) with x′k ∈ Λxi are also explored.

In the following we prove in two steps that all A(y) with y ∈ Y K+1
xj ,fr

must have been

explored before our algorithm returns if xj has ever been explored. In the first step we prove

by contradiction that there must be some xl ∈ {xj ∪Λxj} so that (xl, y) ∈ E for any y ∈ Y K+1
xj ,fr

.

If there is no such xl, that is, for the column corresponding to y in the matrix T (U ix+xj , U
i
y+y),

all entries corresponding to {xj ∪ Λxj} are zeros, so we have

T (xj , U
i
y + y) =

∑
xk∈Λxj⊆U i

x

akxj · T (xk, U
i
y + y)

which leads to

rank(T (U ix + xj , U
i
y + y)) = rank(T (U ix, U

i
y + y)) = K

which is a contradiction with the definition for Y K+1
xj ,fr

.

In the second step we prove that the edge (xl, y) with xl ∈ {xj ∪Λxj} and y ∈ Y K+1
xj ,fr

must

be considered in a forward move in iteration K + 1 and then A(y) be explored given that xj
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has ever been explored. If xl = xj , (xj , y) allows a forward move when xj is explored and then

A(y) will be explored. Now assume xl ∈ Λxj . Given xj is explored, xl is also explored and

U ixl + xl = U ixj + xj

and U iy is unchanged. Given y ∈ Y K+1
xj ,fr

, i.e.,

rank(T (U ixj + xj , U
i
y + y)) = K + 1

we have

rank(T (U ixl + xl, U
i
y + y)) = K + 1

Then (xl, y) allows a forward move when xl is explored and then A(y) will be explored. So all

A(y) with y ∈ Y K+1
xj ,fr

must be explored in iteration K + 1 if xj has ever been explored.

Theorem 11 Our algorithm stops after finding C linearly independent S-D paths in a linear

layered deterministic relay network G where C is the unicast capacity of G.

Proof

Main idea:

First we present the main idea in our proof.

Assume that our algorithm stops after iteration K + 1, i.e., our algorithm fails to find an

additional S-D path in iteration K + 1. We claim that K = C.

Those K paths returned by our algorithm correspond to some transmission scheme of rate

K from S to D, so we must have K ≤ C. Next it’s sufficient for us to prove that K ≥ C.

We prove K ≥ C by proving that when our algorithm stops the number of paths we find, K,

equals some cut value in G.

Consider the cut ΩK separating the nodes labeled explored from the nodes labeled unex-

plored when the algorithm stops in iteration K+1 with S ∈ ΩK . Clearly ΩK is a cut separating

S from D and S ∈ ΩK , D ∈ Ωc
K . We prove K ≥ C by proving that this cut value equals K,

i.e, rank(T (EΩK
)) = K.
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Useful notations:

Second we present some useful notations used in our proof.

Let PK be the set of S-D paths returned from the first K iterations in our algorithm. Let

EP = {(x, y) : (x, y) ∈ E and (x, y) is used by PK}

and

E iP = {(x, y) : (x, y) ∈ EP and L(x) = i}

Let

V ixP = {x : (x, y) ∈ E iP}

and

V iyP = {y : (x, y) ∈ E iP}

We divide the set E iP into four subgroups:

E iP1 = {(x, y) : (x, y) ∈ E iP ,A(x) ∈ ΩK ,A(y) ∈ Ωc
K}

E iP2 = {(x, y) : (x, y) ∈ E iP ,A(x) ∈ ΩK ,A(y) ∈ ΩK}

E iP3 = {(x, y) : (x, y) ∈ E iP ,A(x) ∈ Ωc
K ,A(y) ∈ Ωc

K}

and

E iP4 = {(x, y) : (x, y) ∈ E iP ,A(x) ∈ Ωc
K ,A(y) ∈ ΩK}

We divide the sets V ixP (V iyP) into four subgroups accordingly, V ixPj (V iyPj), 1 ≤ j ≤ 4. Clearly,

the subgroups V ixPj , 1 ≤ j ≤ 4 are disjoint, so are the subgroups V iyPj , 1 ≤ j ≤ 4. Denote

|E iP1| = |V ixP1| = |V iyP1| = Ki1

i.e., Ki1 is the number of paths (or path edges) in PK that cross the cut ΩK in layer cut i.

Denote

|E iP2| = Ki2

|E iP3| = Ki3
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and

|E iP4| = Ki4

Since each S-D path crosses each layer cut exactly once,

Ki1 +Ki2 +Ki3 +Ki4 = K, 1 ≤ i < L

Series of lemmas in the proof:

Lemma 12 says we can prove Theorem 11 or rank(T (EΩK
)) = K by proving that

rank(T iΩK
) = Ki1 −Ki4 for 1 ≤ i < L

Lemma 12

L−1∑
i=1

(Ki1 −Ki4) =

L−1∑
i=1

Ki1 −
L−1∑
i=1

Ki4 = K (3.4)

Proof

Let P be any path in PK . Let kp be the times P goes from ΩK to Ωc
K and k

′
P be the times

P goes from Ωc
K to ΩK . Given S ∈ ΩK and D ∈ Ωc

K , it must be true that

kP − k
′
P = 1

and ∑
P∈PK

kP −
∑
P∈PK

kP ′ =
∑
P∈PK

(kP − k
′
P ) = |PK | = K

By definition, the times that ∀P ∈ PK goes from ΩK to Ωc
K is counted in

∑L−1
i=1 Ki1 and

the times that ∀P ∈ PK goes from Ωc
K to ΩK is counted in

∑L−1
i=1 Ki4, i.e.,

∑
P∈PK

kP −
∑
P∈PK

kP ′ =
L−1∑
i=1

Ki1 −
L−1∑
i=1

Ki4

So we have
L−1∑
i=1

Ki1 −
L−1∑
i=1

Ki4 = K
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Let

E iΩK
= {(x, y) : (x, y) ∈ E ,A(x) ∈ ΩK ,A(y) ∈ Ωc

K and L(x) = i}, 1 ≤ i < L

i.e., E iΩK
is the intersection of the cut ΩK and layer cut i. Let

V ixΩK
= {x : (x, y) ∈ E iΩK

}

and

V iyΩK
= {y : (x, y) ∈ E iΩK

}

Consider the adjacency matrix T (EΩK
) for ΩK . It is a block diagonal matrix with each sub-

block T iΩK
being the adjacency matrix for E iΩK

and

rank(T (EΩK
)) =

L−1∑
i=1

rank(T iΩK
) =

L−1∑
i=1

rank(T (V ixΩK
,V iyΩK

))

In the rest of the proof, we prove

rank(T (EΩK
)) =

L−1∑
i=1

rank(T iΩK
) = K

by proving

rank(T (V ixΩK
,V iyΩK

)) = Ki1 −Ki4, 1 ≤ i < L

(based on Lemma 12).

Let

V ixΩ′K
= {x : A(x) ∈ ΩK and L(x) = i} and V iyΩ′K

= {y : A(y) ∈ Ωc
K and L(y) = i+ 1}

Lemma 13

rank(T (V ixΩK
,V iyΩK

)) = rank(T (V ixΩ′K
,V iyΩ′K

))

Proof

Based on definition, we have

V ixΩ′K
= V ixΩK

∪ V ixΩ′′K
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where

V ixΩ′′K
= {x : A(x) ∈ ΩK ,L(x) = i and there is no (x, y) ∈ E ,∀A(y) ∈ Ωc

K}

and

V iyΩ′K
= V iyΩK

∪ V iyΩ′′K

where

V iyΩ′′K
= {y : A(y) ∈ Ωc

K ,L(y) = i+ 1 and there is no (x, y) ∈ E , ∀A(x) ∈ ΩK}

So in matrix T (V ixΩ′K
,V iyΩ′K

), the rows corresponding to V ixΩ′′K
and the columns corresponding

to V iyΩ′′K
have all-zero entries. So

rank(T (V ixΩK
,V iyΩK

)) = rank(T (V ixΩ′K
,V iyΩ′K

))

Based on Lemma 13, to prove

rank(T (V ixΩK
,V iyΩK

)) = Ki1 −Ki4, 1 ≤ i < L

is equivalent to proving

rank(T (V ixΩ′K
,V iyΩ′K

)) = Ki1 −Ki4, 1 ≤ i < L

All the following lemmas, Lemma 14 through 21, contribute to proving

rank(T (V ixΩ′K
,V iyΩ′K

)) = Ki1 −Ki4, 1 ≤ i < L

We introduce more notations that are useful in our proof. Let

V ixΩ′K
= V ixΩ′K1 + V ixΩ′K2 + V ixΩ′K3 = V ixΩ′K{1,2,3}

(we shall use similar shorthand notations for group union in the following) with

V ixΩ′K1 = V ixP1,V ixΩ′K2 = V ixP2 and V ixΩ′K3 = V ixΩ′K
− V ixΩ′K1 − V

i
xΩ′K2

Similarly, let

V iyΩ′K
= V iyΩ′K{1,2,3}
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with

V iyΩ′K1 = V iyP1,V iyΩ′K2 = V iyP3 and V iyΩ′K3 = V iyΩ′K
− V iyΩ′K1 − V

i
yΩ′K2

Clearly, the subgroups V ixΩ′Kj
, 1 ≤ j ≤ 3 are disjoint, so are the subgroups V iyΩ′Kj

, 1 ≤ j ≤ 3.

Moreover we denote U i as the snapshot of the set of edges in layer cut i being used by

paths in P when a certain input xk with L(xk) = i is being explored in iteration K + 1 of our

algorithm. Here we don’t explicitly specify xk in the notation unless it’s necessary to avoid

confusion. Let U ix and U iy be the corresponding sets of inputs and outputs for U i. Furthermore,

divide U i into U i{1,2,3,4} with

U i1 = {(x, y) ∈ U i,A(x) ∈ ΩK ,A(y) ∈ Ωc
K}

U i2 = {(x, y) ∈ U i,A(x) ∈ ΩK ,A(y) ∈ ΩK}

U i3 = {(x, y) ∈ U i,A(x) ∈ Ωc
K ,A(y) ∈ Ωc

K}

U i4 = {(x, y) ∈ U i,A(x) ∈ Ωc
K ,A(y) ∈ ΩK}

Divide U ix and U iy accordingly into four disjoint subgroups U ix{1,2,3,4} and U iy{1,2,3,4}. Based on

our algorithm,

|U i1|+ |U i2|+ |U i3|+ |U i4| = K

and rank(T (U i)) = K. We also have

|U ij | = |U ixj | = |U iyj |, 1 ≤ j ≤ 4

The rest of the proof is organized as follows. From Lemma 14 to 19, we prove that for any

input xk with L(xk) = i, when it is explored in iteration K + 1, we have

rank(T (U ix{1,2}, U
i
y{1,3})) = Ki1 −Ki4, 1 ≤ i < L

Specifically, we prove it by first proving

rank(T (U ix{1,2}, U
i
y{1,3})) ≥ Ki1 −Ki4

from Lemma 14 to 16 and second proving

rank(T (U ix{1,2}, U
i
y{1,3})) ≤ Ki −Ki4
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from Lemma 17 to 19. Then from Lemma 20 to 21 we prove that when we extend U ix{1,2} to

V ixΩ′K
and extend U iy{1,3} to V iyΩ′K

, the resultant matrix still have the same rank, i.e.,

rank(T (V ixΩ′K
,V iyΩ′K

)) = Ki1 −Ki4, 1 ≤ i < L

Lemma 14 For any input xk with L(xk) = i, when it is explored in iteration K + 1, we have

Λxk ⊆ U ix{1,2} and

rank(T (U ix{1,2} + xk, U
i
y)) = rank(T (U ix{1,2}, U

i
y)) = |U ix1|+ |U ix2| (3.5)

For any y ∈ V iyΩ′K3, we have

rank(T (U ix{1,2} + xk, U
i
y + y)) = rank(T (U ix{1,2}, U

i
y + y)) = |U ix1|+ |U ix2| (3.6)

Proof

Based on Lemma 10, all A(xj) with xj ∈ Λxk will finally be explored in iteration K + 1 if

xk has ever been explored. By definition, A(x) is not explored for any x ∈ U ix{3,4}, so we have

Λxk ⊆ U ix{1,2}. By definition of Λxk , it’s easy to conclude that (3.5) holds.

By definition A(y) is not explored for any given y ∈ V iyΩ′K3. Based on Lemma 10, we must

have y 6∈ Y K+1
xk,fr

, i.e.,

rank(T (U ix + xk, U
i
y + y)) = K

Given

rank(T (U ix, U
i
y + y)) = K

we have

T (xk, U
i
y + y) =

∑
xj∈Λ′

ajxk
′ · T (xj , U

i
y + y) for some Λ′ ⊆ U ix

From Definition 1, Λxk ⊆ U ix and {ajxk} are the unique sets satisfying

T (xk, U
i
y)) =

∑
xj∈Λxk

ajxk · T (xj , U
i
y)

so we conclude Λ′ = Λxk and ajxk
′ = ajxk , i.e.,

T (xk, U
i
y + y) =

∑
xj∈Λxk

ajxk · T (xj , U
i
y + y)
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We already proved Λxk ⊆ U ix{1,2}, so

rank(T (U ix{1,2} + xk, U
i
y + y)) = rank(T (U ix{1,2}, U

i
y + y)) = |U ix1|+ |U ix2|

Lemma 15 For any input xk with L(xk) = i, when it is explored in iteration K + 1, we have

U ix{3,4} = V ixP{3,4} and U iy{1,3} = V iyP{1,3}

which leads to

|U ix1|+ |U ix3| = |V ixP1|+ |V ixP3| = Ki1 +Ki3

|U ix3|+ |U ix4| = |V ixP3|+ |V ixP4| = Ki3 +Ki4

and

|U ix1| − |U ix4| = |V ixP1| − |V ixP4| = Ki1 −Ki4

Proof

By definition, all nodes A(x) or A(y) with x ∈ V ixP{3,4} or y ∈ V iyP{1,3} are labeled unex-

plored when our algorithm returns, so during the running time of our algorithm in iteration

K + 1, any node x ∈ V ixP{3,4} or y ∈ V iyP{1,3} is never explored and V ixP{3,4} ⊆ U ix and

V iyP{1,3} ⊆ U
i
y always hold for any xk explored with L(xk) = i.

By definition, any A(x) (or A(y)) with input x (or output y) used by U i but not by E iP

must be explored, which means V ixP{3,4} ⊆ U
i
x is the complete subset of U ix satisfying for each

x in this set, A(x) is unexplored and V iyP{1,3} ⊆ U
i
y is the complete subset of U iy satisfying for

each node y in this set, A(y) is unexplored. So we conclude

U ix{3,4} = V ixP{3,4} and U iy{1,3} = V iyP{1,3}

Given all subsets of U ix or U iy are disjoint and |U ij | = |U ixj | = |U iyj |, 1 ≤ j ≤ 4, we conclude

that

|U ix1|+ |U ix3| = |V ixP1|+ |V ixP3| = Ki1 +Ki3

|U ix3|+ |U ix4| = |V ixP3|+ |V ixP4| = Ki3 +Ki4
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and

|U ix1| − |U ix4| = |V ixP1| − |V ixP4| = Ki1 −Ki4

In the following, we directly apply the result

|U ix1| − |U ix4| = Ki1 −Ki4

from Lemma 15.

Lemma 16 proves

rank(T (U ix{1,2}, U
i
y{1,3})) ≥ Ki1 −Ki4

by contradiction.

Lemma 16 For any input xk with L(xk) = i, when it is explored in iteration K + 1, we have

rank(T (U ix{1,2}, U
i
y{1,3})) ≥ |U

i
x1| − |U ix4| = Ki1 −Ki4

Proof

If Ki1 −Ki4 < 0, the statement is obviously true. Assume Ki1 −Ki4 ≥ 0. We know

rank(T (U i)) = K = |U i1|+ |U i2|+ |U i3|+ |U i4|

Assume that

rank(T (U ix{1,2}, U
i
y{1,3})) < |U

i
x1| − |U ix4|

then we would have

rank(T (U i)) = rank(T (U ix{1,2,3,4}, U
i
y{1,2,3,4}))

≤ rank(T (U ix{1,2}, U
i
y{1,3})) + |U ix{3,4}|+ |U

i
y{2,4}|

< |U ix1| − |U ix4|+ |U ix3|+ |U ix4|+ |U ix2|+ |U ix4|

= K

which is a contradiction.
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Lemma 17 through 19 proves

rank(T (U ix{1,2}, U
i
y{1,3})) ≤ Ki1 −Ki4

by contradiction.

Let y ∈ U iy{2,4}. By definition, A(y) is explored in iteration K + 1. If y ∈ V iyP , then

according to our algorithm y must have been deleted from U iy in a backward rewiring along

Py→x for some x in iteration K+1 when A(y) is explored. This backward rewiring may happen

either after the current exploration of xk or before the current exploration of xk in which case

y must have already been added back to U iy before the current exploration of xk, otherwise

it won’t appear in U iy when xk is explored. If y 6∈ V iyP , then according to our algorithm y

must have been added to U iy in a forward move along edge (x, y) for some x before the current

exploration to xk otherwise y won’t appear in U iy when xk is explored. It means for each

y ∈ U iy{2,4}, y is either added to U iy before the current exploration of xk or is deleted from U iy

after the current exploration of xk.

Lemma 17 For any input xk with L(xk) = i, when it is explored in iteration K + 1, if

rank(T (U ix{1,2}, U
i
y{1,3})) > |U

i
x1| − |U ix4| = Ki1 −Ki4

then there exists some nonempty set V iy24 ⊆ U iy{2,4}, such that for any y ∈ V iy24,

T (U ix{1,2}, y) =
∑
yj∈V ′y

ajy · T (U ix{1,2}, yj)

for some V ′y = V iy24 − y + V ′′y with V ′′y ⊆ U iy{1,3}.

Proof

Given

rank(T (U ix{1,2}, U
i
y{1,2,3,4})) = |U ix1|+ |U ix2|

if

rank(T (U ix{1,2}, U
i
y{1,3}) > |U

i
x1| − |U ix4|
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we claim there must exist some y′ ∈ U iy{2,4}, such that

T (U ix{1,2}, y
′) =

∑
yj∈Vy′

ajy′ · T (U ix{1,2}, yj) for some Vy′ ⊆ U iy{1,2,3,4} − y
′

We prove this claim by contradiction. Assume for any y′ ∈ U iy{2,4},

T (U ix{1,2}, y
′) 6=

∑
yj∈Vy′

ajy′ · T (U ix{1,2}, yj) for any Vy′ ⊆ U iy{1,2,3,4} − y
′

then we would have

rank(T (U ix{1,2}, U
i
y{1,2,3,4})) = rank(T (U ix{1,2}, U

i
y{1,3})) + |U iy2|+ |U iy4|

> |U ix1| − |U ix4|+ |U ix2|+ |U ix4|

= |U ix1|+ |U ix2|

which is a contradiction. So the above claim holds. Now let

V iy24 = {y′ + Vy′} ∩ U iy{2,4}

Obviously V iy24 6= ∅ (with at least y′). Let

V ′′y = y′ + Vy′ − V iy24 ⊆ U iy{1,3}

Then ∑
yj∈Vi

y24

ajy′ · T (U ix{1,2}, yj) =
∑
yj∈V ′′y

ajy′′ · T (U ix{1,2}, yj)

So for any y ∈ V iy24, we have

T (U ix{1,2}, y) =
∑

yj∈Vi
y24−y

ajy · T (U ix{1,2}, yj) +
∑
yj∈V ′′y

ajy
′′ · T (U ix{1,2}, yj)

=
∑
yj∈V ′y

ajy · T (U ix{1,2}, yj)

with V ′y = V iy24 − y + V ′′y .

Lemma 17 says if

rank(T (U ix{1,2}, U
i
y{1,3})) > |U

i
x1| − |U ix4| = Ki1 −Ki4
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then there is a nonempty V iy24 as described in Lemma 17. Now assume rank(T (U ix{1,2}, U
i
y{1,3})) >

Ki1 −Ki4 and let y′ ∈ V iy24 ⊆ U iy{2,4} be the last one in V iy24 being added to the set U iy before

the current exploration of xk or the first one in V iy24 being deleted from the set U iy after the

current exploration of xk. By definition of V iy24,

T (U ix{1,2}, y
′) =

∑
yj∈V ′y

ajy · T (U ix{1,2}, yj) (3.7)

for some V ′y = V iy24 − y′ + V ′′y ⊆ U iy − y′ with V ′′y ⊆ U iy{1,3}. Let x′ be the corresponding input

being added or deleted with y′.

Lemma 18 For any input xk with L(xk) = i, when it is explored in iteration K + 1, assume

rank(T (U ix{1,2}, U
i
y{1,3})) > |U

i
x1| − |U ix4| = Ki1 −Ki4

and let y′, x′ be defined above. Then just after adding y′ or just before deleting y′, we have

T (U ix{1,2} + x′, y′) =
∑
yj∈V ′y

ajy · T (U ix{1,2} + x′, yj) (3.8)

for the same V ′y as in Equation (3.7). And when x′ is explored just before adding y′ or just

after deleting y′, we have

rank(T (U ix{1,2} + x′, U iy)) = |U ix1|+ |U ix2|+ 1 (3.9)

Note that in equations (3.8) and (3.9), U ixj , U
i
yj , 1 ≤ j ≤ 4 represent the corresponding sets

when x′ is being explored.

Proof

Since y′ ∈ V iy24 is the last one in the set V iy24 being added to the set U iy before the current

exploration of xk or the first one in the set V iy24 being deleted from the set U iy after the current

exploration of xk, so V ′y in equation (3.8) is the same as in (3.7) (given also V ′′y ⊆ (U iy{1,3} =

V iyP{1,3}) is not changed), but the set U ix{1,2} in equation (3.7) are changing to U ix{1,2} + x′

in equation (3.8). When our algorithm proceeds from the point of just after adding y′, x′ to

U iy, U
i
x to the point of exploring xk or from the point of exploring xk to the point of just
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before deleting y′, x′ from U iy, U
i
x, only three kinds of moves are allowed, i.e., the forward move,

the same-layer rewiring and the backward rewiring. It is sufficient for us to show that any

such move or the backtracking of such move doesn’t change the linear relationship among the

columns in equation (3.7) so that equation (3.8) holds.

Let’s first consider the three moves. A forward move along edge (x, y) would change U ix to

U ix + x. Since Λx ⊆ U ix{1,2} (based on Lemma 14), the vector T (x, U iy) is a linear combination

of row vectors in T (U ix{1,2}, U
i
y), so the relationship in (3.7) still holds when U ix{1,2} changes to

U ix{1,2} + x in a forward move. In a same-layer rewiring, U ix{1,2} changes to U ix{1,2} + x − xj

for some xj ∈ Λx ⊆ U ix{1,2} (based on Lemma 14). Again the vector T (x, U iy) is a linear

combination of row vectors in T (U ix{1,2}, U
i
y), so the relationship in (3.7) still holds when

U ix{1,2} changes to U ix{1,2}+ x− xj . In a backward rewiring along Py→x, some y ∈ U iy −V iy24 is

deleted and some x ∈ U ix{1,2} is deleted which obviously doesn’t affect the relationship in (3.7).

Now let’s consider backtracking of these moves. Let equation (3.7) hold after a backward

rewiring along Py→x for some y 6∈ V iy24. After this move, our algorithm will explore A(x) when

x will be explored with Λx ⊆ U ix{1,2} (based on Lemma 14), so equation (3.7) should hold before

the backward move when U ix{1,2} was U ix{1,2}+x. A proceeding same-layer rewiring before the

current exploration of x means U ix{1,2} was U ix{1,2} + x− x′ with x ∈ Λx′ before the move. Let

equation (3.7) hold after this move when x is explored. Again Λx ⊆ U ix{1,2} (based on Lemma

14), so equation (3.7) holds with the addition of the row for x, which means equation (3.7)

holds before the same-layer move when U ix{1,2} was U ix{1,2} + x− x′. If the proceeding move is

a forward move, it means that U ix{1,2} was U ix{1,2} − x. It is obvious that equation (3.7) holds

before this move with rows in U ix{1,2}−x if it holds after this move with rows in U ix{1,2}. From

above discussion, we conclude that equation (3.8) holds.

After adding y′ or before deleting y′ from U iy, we have

rank(T (U ix{1,2} + x′, U iyu + y′)) = |U ix1|+ |U ix2|+ 1

Given that equation (3.8) holds, we have

rank(T (U ix{1,2} + x′, U iy)) = |U ix1|+ |U ix2|+ 1
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when x′ is explored just before adding y′ or just after deleting y′.

Lemma 19 For any input xk with L(xk) = i, when it is explored in iteration K + 1, we have

rank(T (U ix{1,2}, U
i
y{1,3})) = |U ix1| − |U ix4| = Ki1 −Ki4 ≥ 0

Proof

First we prove Ki1−Ki4 ≥ 0 by contradiction. Assume Ki1−Ki4 < 0. Then we must have

rank(T (U ix{1,2}, U
i
y{1,3})) > |U

i
x1| − |U ix4| = Ki1 −Ki4

Based on Lemma 17 and 18, if

rank(T (U ix{1,2}, U
i
y{1,3})) > |U

i
x1| − |U ix4| = Ki1 −Ki4

then we will have

rank(T (U ix{1,2} + x′, U iy)) = |U ix,1|+ |U ix2|+ 1

when x′ is explored just before adding y′ or just after deleting y′ for x′, y′ defined as in Lemma

18, but it is a contradiction with Lemma 14, so we must have Ki1 −Ki4 ≥ 0.

Second we prove

rank(T (U ix{1,2}, U
i
y{1,3})) = Ki1 −Ki4

with Ki1 −Ki4 ≥ 0. Assume

rank(T (U ix{1,2}, U
i
y{1,3})) > |U

i
x1| − |U ix4| = Ki1 −Ki4

Using a similar argument as above, we would arrive at a contradiction. So we must have

rank(T (U ix{1,2}, U
i
y{1,3})) ≤ |U

i
x1| − |U ix4| = Ki1 −Ki4

Now together with Lemma 16, we conclude that

rank(T (U ix{1,2}, U
i
y{1,3})) = |U ix1| − |U ix4| = Ki1 −Ki4
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Lemma 20 For any input xk with L(xk) = i and any yj ∈ V iyΩ′K3, when xk is explored in

iteration K + 1, we have

rank(T (U ix{1,2} + xk, U
i
y{1,3} + yj)) = rank(T (U ix{1,2} + xk, U

i
y{1,3}))

= |U ix1| − |U ix4| = Ki1 −Ki4

Proof

First we prove

rank(T (U ix{1,2} + xk, U
i
y{1,3})) = Ki1 −Ki4

Based on Lemma 14, Λxk ⊆ U ix{1,2}, so

rank(T (U ix{1,2} + xk, U
i
y{1,3})) = rank(T (U ix{1,2}, U

i
y{1,3}))

= |U ix1| − |U ix4| = Ki1 −Ki4

(the second equality follows Lemma 19).

Second we prove

rank(T (U ix{1,2} + xk, U
i
y{1,3} + yj)) = |U ix1| − |U ix4| = Ki1 −Ki4

Given

rank(T (U ix{1,2} + xk, U
i
y{1,3})) = |U ix1| − |U ix4| = Ki1 −Ki4

rank(T (U ix{1,2} + xk, U
i
y{1,3} + yj)) equals either |U ix1| − |U ix4| or |U ix1| − |U ix4|+ 1. Assume

rank(T (U ix{1,2} + xk, U
i
y{1,3} + yj)) = |U ix1| − |U ix4|+ 1 (3.10)

From Lemma 14, we have (3.11) and (3.12),

rank(T (U ix{1,2} + xk, U
i
y + yj)) = rank(T (U ix{1,2}, U

i
y + yj)) = |U ix1|+ |U ix2| (3.11)

T (xk, U
i
y + yj) =

∑
xm∈Λxk

⊆U i
x{1,2}

amxk · T (xm, U
i
y + yj) (3.12)
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From (3.10) and (3.12), we have

rank(T (U ix{1,2}, U
i
y{1,3} + yj)) = |U ix1| − |U ix4|+ 1 (3.13)

From (3.11) and (3.13), we have

T (U ix{1,2}, yj) =
∑

y′∈Vy13

a
′
yj · T (U ix{1,2}, y

′) +
∑

y′′∈Vy24

a
′′
yj · T (U ix{1,2}, y

′′) (3.14)

for some Vy13 ⊆ U iy{1,3} and some nonempty Vy24 ⊆ U iy{2,4}. From (3.12) and (3.14), we have

T (U ix{1,2} + xk, yj) =
∑

y′∈Vy13

a
′
yj · T (U ix{1,2} + xk, y

′) +
∑

y′′∈Vy24

a
′′
yj · T (U ix{1,2} + xk, y

′′) (3.15)

for the same Vy13 and Vy24 in (3.14).

Let y′ ∈ Vy24 be the last one in Vy24 being added to the set U iy before the current exploration

of xk or the first one in Vy24 being deleted from the set U iy after the current exploration of xk

and let x′ be the corresponding input being added or deleted with y′. Then using a similar

argument as in Lemma 18, we have

rank(T (U ix{1,2} + x′, U iy + yj)) = |U ix1|+ |U ix2|+ 1

when x′ is explored just before adding y′ or just after deleting y′, but it’s a contradiction with

Lemma 14. So it must be

rank(T (U ix{1,2} + xk, U
i
y{1,3} + yj)) = |U ix1| − |U ix4| = Ki1 −Ki4

Lemma 21

rank(T iΩK
) = rank(T (V ixΩK

,V iyΩK
))

= Ki1 −Ki4, 1 ≤ i ≤ L− 1

Proof

Based on Lemma 13, it’s sufficient to prove

rank(T (V ixΩ′K
,V iyΩ′K

)) = Ki1 −Ki4, 1 ≤ i ≤ L− 1
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If E iΩK
= ∅, i.e., the cut ΩK and layer cut i has no intersection, then

rank(T (V ixΩ′K
,V iyΩ′K

)) = Ki1 −Ki4 = 0

holds. Next assume that E iΩK
6= ∅.

From Lemma 14 and Lemma 20, it’s easy to conclude that

rank(T (U ix{1,2} + xk, U
i
y{1,3} + V iyΩ′K3 = V iyΩ′K

)) = rank(T (U ix{1,2},V
i
yΩ′K

)) = Ki1 −Ki4 (3.16)

where U iy{1,3} = V iyP{1,3} = V iyΩ′K{1,2}
(based on Lemma 15) and

T (xk,V iyΩ′K
) =

∑
xm∈Λxk

⊆U i
x{1,2}

amxk · T (xm,V iyΩ′K
) (3.17)

for any input xk with L(xk) = i explored in iteration K + 1.

Let xiq, 1 ≤ q ≤ Q be the qth input in layer i that has been explored in iteration K + 1 in

our algorithm. Note that since some inputs may be explored more than once, xiq may not be

distinct but Q is finite. We claim that for 1 ≤ q ≤ Q,

rank(T (V ixP{1,2} +

q∑
k=1

xik,V iyΩ′K
)) = rank(T (V ixP{1,2},V

i
yΩ′K

)) = Ki1 −Ki4 (3.18)

Now we prove (3.18). When xi1 is explored, U ix1{1,2} = V ixP{1,2}. From (3.16), we have

rank(T (V ixP{1,2} + xi1,V iyΩ′K
)) = rank(T (V ixP{1,2},V

i
yΩ′K

)) = Ki1 −Ki4 (3.19)

When xi2 is explored, U ix2{1,2} ⊆ U
i
x1{1,2} + xi1, and from (3.16)

rank(T (U ix2{1,2} + xi2,V iyΩ′K
)) = rank(T (U ix2{1,2},V

i
yΩ′K

)) = Ki1 −Ki4 (3.20)

From (3.19) and (3.20), we conclude that

rank(T (V ixP{1,2} + xi1 + xi2,V iyΩ′K
)) = Ki1 −Ki4

Use induction on xiq, 1 ≤ q ≤ Q, just as we did for xi2, we conclude that (3.18) holds for any

q,1 ≤ q ≤ Q.

We know that

V ixP{1,2} +

Q∑
k=1

xik = V ixΩ′K
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so when q = Q equation (3.18) means that

rank(T (V ixΩ′K
,V iyΩ′K

)) = Ki1 −Ki4, 1 ≤ i ≤ L− 1

From Lemma 21, we have

rank(T (EΩK
)) =

L−1∑
i=1

rank(T iΩK
) =

L−1∑
i=1

(Ki1 −Ki4)

and from Lemma 12, we have
L−1∑
i=1

(Ki1 −Ki4) = K

so we conclude

rank(T (EΩK
)) = K

This concludes our proof for Theorem 11.

Theorems 9 and 11 prove that our algorithm terminates in finite time. Theorem 11 proves

that our algorithm returns C linearly independent S-D paths where C is the unicast capacity of

the underlying deterministic relay network. They consist of the complete proof of correctness

for our algorithm for finding the unicast capacity of any linear layered deterministic wireless

relay network.

3.5 Conclusions

In this chapter we present an improved algorithm for finding the unicast capacity of lin-

ear deterministic wireless networks. Our algorithm improves upon the original algorithm by

Amaudruz & Fragouli (2009). We amend the original algorithm so that it finds the unicast

capacity correctly for any given deterministic networks. Moreover we fully explore several

useful combinatorial features intrinsic in the problem which lead to reduced complexity. Our

improved algorithm applies with any size of finite fields associated with the ADT model defin-

ing the network. Our improved algorithm proves to be very competitive when comparing with

other algorithms on solving the same problem in terms of complexity.
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CHAPTER 4. DESIGN AND ANALYSIS OF RATE COMPATIBLE

LDPC CODES

As introduced in Chapter 1, rate-compatible LDPC codes are a good choice for changing

channel conditions, like in wireless communications. The previous work on the design and

analysis of LDPC codes are all targeting at a specific code rate and no work is known on the

design and analysis of rate-compatible LDPC codes so that the code performance at all code

rates in the family are manageable and predictable. In our work, we proposed algorithms for

the design and analysis of rate-compatible LDPC codes with good puncturing performance

and make the code performance at all code rates manageable and predictable. Our work is

based on E2RC codes, while our approaches in the design and analysis can be applied more

generally not only to E2RC codes, but to other suitable scenarios, like the design of IRA codes

(Jin, etc. (2000)). Most encouragingly, we obtain families of rate-compatible codes whose

gaps to capacity are at most 0.3 dB across the range of rates when the maximum variable node

degree is twenty, which is very promising compared with other existing results.

In this chapter, we consider the design and analysis of the efficiently-encodable rate-

compatible (E2RC) irregular LDPC codes proposed in previous work. In this part we introduce

semi-structured E2RC-like codes and protograph E2RC codes. EXIT chart based methods

are developed for the design of semi-structured E2RC-like codes that allow us to determine

near-optimal degree distributions for the systematic part of the code while taking into account

the structure of the deterministic parity part, thus resolving one of the open issues in the orig-

inal construction. We develop a fast EXIT function computation method that does not rely

on Monte-Carlo simulations and can be used in other scenarios as well. Our approach allows

us to jointly optimize code performance across the range of rates under puncturing. We then
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consider protograph E2RC codes (that have a protograph representation) and propose rules

for designing a family of rate-compatible punctured protographs with low thresholds. For both

the semi-structured and protograph E2RC families we obtain codes whose gap to capacity is

at most 0.3 dB across the range of rates when the maximum variable node degree is twenty.

4.1 Introduction

Low-density parity-check (LDPC) codes Gallager (1963) have found widespread acceptance

in different areas due to their superior performance and low complexity decoding. In this

chapter, we investigate rate-compatible punctured LDPC codes that have the flexibility of

operating at different code rates while having a single encoder-decoder pair. Rate-compatible

punctured codes are defined by specifying a systematic mother code that operates at the lowest

code rate. The parity bits of higher rate codes in a rate-compatible code family are subsets

of the parity bits of lower rate codes. A number of papers have investigated issues around

the design of good rate-compatible punctured LDPC codes. The work of Ha, etc. (2004 - 1)

presents methods for finding optimal degree distributions for puncturing. In Ha, etc. (2004

- 2), Ha, etc. (2006), Yue, etc. (2007), algorithms for finding good puncturing patterns for

a given mother code were proposed. There have also been attempts to design mother codes

(along with puncturing patterns) with good performance under puncturing Kim, etc. (2009),

Yazdani & Banihashemi (2004), Kim, etc. (2006).

E2RC codes introduced in Kim, etc. (2009) are linear-time encodable and have good

puncturing performance across a wide range of code rates. In this work we present systematic

approaches for the design and analysis of E2RC-like codes. Let H = [H1|H2] denote the parity

check matrix of a systematic LDPC code where H1 denotes the systematic part and H2 the

parity part. We address the design of two types of codes in our work as explained below.

i) Semi-structured E2RC-like codes.

In these codes the parity part H2 is deterministic. We use the lower triangular form

introduced in Kim, etc. (2009) and introduce a protograph structure for the H2 part. An

example is shown in Fig. 4.1. We assume a random edge interleaver between systematic
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variable nodes and check nodes, which divides the code into a structured part and an

unstructured part, as shown in Fig. 4.1. We solve the problem of finding optimal degree

distributions for the unstructured part in this case for optimizing the rate-compatible

codes at any specified punctured code rate(s).

ii) Structured E2RC-like codes.

These codes are protograph codes as introduced in Thorpe (2003). The distinguishing

feature is that the parity part of the protograph has an E2RC structure. We demonstrate

that very good rate-compatible punctured code families can be obtained using the design

rules we propose for the protograph construction. The protograph structure is especially

valuable in practical applications as it allows parallelized decoding and requires signifi-

cantly less storage space for the description of the parity-check matrix than unstructured

codes when circulant permutations are used.

We obtain semi-structured E2RC codes that have a small gap to capacity across the range of

puncturing rates. Furthermore, we present optimized quasi-cyclic protograph codes based on

the E2RC structure and demonstrate that very good performance can be obtained with them.

This chapter is organized as follows. In Section 4.2, we briefly discuss the main contributions

of our work. Section 4.4 presents our new method for the design of semi-structured E2RC

codes. We also discuss the method of predicting the puncturing performance of semi-structured

E2RC codes and the joint optimization of our codes at any specified punctured code rates. We

explain the construction of protograph E2RC codes in Section 4.5, and Section 3.5 outlines

our conclusions.

4.2 Main Contributions

We first outline the issues left unresolved in the work of Kim, etc. (2009).

a) The original construction of E2RC codes proposed the special H2 (parity part) structure

of the parity-check matrix H. However the design of appropriate degree sequences for the

H1 (information part) based on the constrained H2 structure, was not discussed. In Kim,
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Figure 4.1 Tanner graph representation of E2RC codes.

etc. (2009), the authors used degree sequences designed for standard irregular codes and

constructed H to match these distributions as closely as possible.

b) The construction technique did not provide any means of optimizing code performance at

any particular puncturing rate or across all rates simultaneously.

c) As pointed out by an anonymous reviewer, the original E2RC codes suffer from high error

floors Song, etc. (2008) at the mother code rate. As shown in Song, etc. (2008), this is

because the H2 structure causes the maximum check node degree to be large.

d) The original E2RC codes work with completely random interleavers, that are hard to im-

plement in practice.

In this chapter, we resolve each of the issues discussed above. We briefly overview the main

contributions below.

i) Systematic design techniques for E2RC-like codes.

Note that the analysis of E2RC codes does not follow directly from the analysis of related

codes such as systematic IRA codes Jin, etc. (2000), Roumy, etc. (2004). This is because

the structured part of IRA codes is symmetric while that of E2RC codes is quite asymmetric.
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In Roumy, etc. (2004), four methods were proposed for the design of IRA codes. The first

two methods implicitly assumed one edge type in the accumulator part which was justified

by the symmetry of the part. Together with a one-parameter approximation of the message

distribution function, Gaussian or BEC approximation, these two methods yielded almost

closed-form equations of density evolution. However, one-edge type assumption turns out not

accurate enough for the structured part of E2RC codes because of its asymmetry. In the latter

two methods in Roumy, etc. (2004), Monte Carlo simulations were used for generating the

EXIT function of the structured part of IRA codes. The Monte Carlo simulation based method

is accurate for computing EXIT functions of both symmetric and asymmetric constituent code

components by taking the structure of the code component into account. When we design

semi-structured E2RC codes using EXIT chart, we take into account the complete structure

of the deterministic part of E2RC codes to compute the EXIT function as presented in Section

4.4. Instead of resorting to Monte Carlo simulations, we propose a fast and analytical method

for computing EXIT functions by solving a set of equations. We use multiple edge types

Richardson (2009) for the structured part of E2RC codes, one edge type for each edge in

the protograph representation. So instead of having only three equations (equations (19) (20)

(21) in Roumy, etc. (2004)) from the structured part of IRA codes, we have 2|ER| + |EL|

equations from the structured part of E2RC codes for density evolution. As demonstrated by

simulations and the threshold predictions, this introduces a systematic method towards the

design of semi-structured E2RC codes with better performance than the original E2RC codes.

ii) A fast technique for EXIT function computation of code components based on protographs.

Note that usually EXIT functions are computed via Monte-Carlo simulation, which tends to be

time-consuming. In this work we present a general technique for computing EXIT functions of

code components with a protograph structure. This greatly speeds up the code design process.

While we applied it to the design of our semi-structured E2RC-like codes, it can be applied

for any protograph like components, e.g. we can apply it to find the EXIT function of the H2

part of the IRA code by working with its protograph representation.
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iii) Simultaneous optimization of code performance across multiple rates.

By exploring the E2RC structure and its designed puncturing pattern, we propose the design

of good rate-compatible punctured codes so that the gap to capacity across the entire range of

rates can be controlled. To the best of our knowledge, the current literature does not address

this point.

iv) Alleviating the high error floor problem of the original E2RC codes.

In our design of semi-structured E2RC codes, we impose a protograph structure on the H2

part, which corresponds to the H2 part of a very short original E2RC code. This ensures that

the maximum check node degree remains low, thus preventing the high error floors that occur

in the original E2RC codes at mother code rate. For a related approach see Song, etc. (2008).

v) Design of high-performance codes based on protographs.

Codes with completely random interleavers are too complex from the point of view of im-

plementation in hardware. In this work, we design protograph E2RC codes where both the

H1 and the H2 parts have a protograph structure. We propose design rules for generating a

family of rate-compatible protographs with good threshold properties at all punctured rates.

Finally, we demonstrate codes with performance better than the original E2RC codes, that

are obtained by replacing the protograph edges by circulant permutations.

4.3 Background and Related Work

An LDPC code can be defined by a parity-check matrix or equivalently by a bipartite (or

Tanner) graph representation. For the bipartite graph representation, we follow the convention

that a blank circle represents an unpunctured variable node participating in the transmission

and a filled circle represents a punctured variable node not participating in the transmis-

sion. The asymptotic threshold of LDPC codes can be found by performing density evolution

Richardson, etc. (2001), Richardson & Urbanke (2001), Luby, etc. (1997), Shokrollahi

(1999) on the degree distribution pair. However, for LDPC codes with structured components

such as IRA codes and protograph LDPC codes Thorpe (2003), the density evolution analysis
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needs to take the underlying structure into account. This can be handled by classifying edges

into different types Richardson (2009) and also by using EXIT charts Brink & Kramer (2003).

Protograph LDPC codes start with a small mini-graph (called a protograph) and construct

the LDPC codes by replacing each edge in the protograph by a random permutation of a fixed

size. They can be considered as a subclass of the multi-edge type LDPC codes Richardson

(2009). Fast density evolution based on the reciprocal channel approximation Chung (2000)

can be performed on protographs to determine their asymptotic threshold.

4.3.1 Efficiently Encodable Rate-Compatible LDPC Codes

We now briefly overview the E2RC codes introduced in Kim, etc. (2009). Let H = [H1|H2]

denote the parity-check matrix of an E2RC code in systematic form. We say that a parity

node in H2 is k-step recoverable (or k-SR) if it can be recovered in exactly k iterations of

iterative decoding assuming that all the parity bits are punctured and all the systematic bits

are known (Fig. 4.2 shows an example). Intuitively, a large number of low-SR nodes tend to

reduce the required number of decoding iterations in the high SNR regime and result in good

puncturing performance.

Figure 4.2 The figure shows an example of a 1-SR, 2-SR and 3-SR node.

In Kim, etc. (2009), the submatrix H2 consists of exclusively degree-2 and degree-1 nodes.

Moreover, when the number of parity nodes is a power of two, half the nodes in H2 are 1-SR,

one-fourth are 2-SR and so on. The special structure of H2 for E2RC codes allows linear-time

encoding and results in good puncturing performance with a puncturing pattern, where 1-SR

nodes should be punctured first, 2-SR nodes be punctured next and so on depending upon the
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rate requirement.

The E2RC codes have good puncturing performance at relatively short block lengths.

However, when the block length gets large, the structure of H2 may induce a large spread in

the check node degree distribution that may cause a loss of performance. In recent work, Song

et al. Song, etc. (2008) showed that E2RC codes exhibit high error floors at their mother

code rate and claimed that this stems from their dispersive right degree distribution and high

maximum right degree. They presented a modified approach that fixes the high error floor

problem. In Section 4.4.2, we show that our approach also effectively eliminates the high error

floors of E2RC codes at the mother code rate. In fact we obtain codes whose performance is

slightly better than those in Song, etc. (2008).

4.3.2 Why EXIT Chart

The asymptotic threshold of LDPC codes can be found by performing density evolution

Richardson, etc. (2001) Richardson & Urbanke (2001) Luby, etc. (1997) Shokrollahi (1999)

on the degree distribution pair. However, for LDPC codes with structured components such as

IRA codes and protograph LDPC codes Thorpe (2003), the density evolution analysis needs

to take the underlying structure into account. This can be handled by classifying edges into

different types Richardson (2009) and also by using EXIT charts Brink & Kramer (2003).

EXIT charts Brink (2001) were first proposed for understanding the convergence behavior

of iteratively decoded parallel concatenated codes, and were later generalized to the analysis

of LDPC codes Brink & Kramer (2003), Brink, etc. (2004), Ashikhmin, etc. (2004), Sharon,

etc. (2006). The components of an EXIT chart are the EXIT functions of the constituent code

components of the iterative decoder, which relates the a priori mutual information available to

a code component, denoted IA and the extrinsic mutual information generated after decoding,

denoted IE . The advantage of EXIT charts is that the code design problem can be reduced to

a curve fitting problem between the code components (usually two in number).

For log-domain belief propagation decoding of unstructured LDPC codes, if the incoming

messages to a variable node v of degree dv are assumed to be Gaussian and independent, the
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EXIT function for the code component involving all variable nodes is given by Brink, etc.

(2004)

IE,V (IA,V , σ
2
mch) =

∑
dv

λdvJ(
√

(dv − 1)[J−1(IA,V )]2 + σ2
mch,v) (4.1)

where σ2
mch,v = 4/σ2

n for unpunctured v (σ2
n represents the channel noise variance), σ2

mch,v =

0 for punctured v and {λdv} is the edge perspective degree distribution of variable nodes.

Similarly the EXIT function for the code component involving all check nodes is given by

IE,C(IA,C) = 1−
∑
dc

ρdcJ(
√

(dc − 1)[J−1(1− IA,C)]2) (4.2)

where {ρdc} is the edge perspective degree distribution of check nodes.

4.4 Semi-Structured E2RC-Like Code Design

In this section, we propose our design method for semi-structured E2RC-like codes using

EXIT charts. We consider the unstructured part and the structured part of E2RC codes

shown in Fig. 4.1 as the two constituent code components. This code division for EXIT chart

analysis is justified by the random edge interleaver between the two code components.

We denote the set of variable nodes in the Tanner graph by V = V1 ∪ V2 where V1 is the

subset of nodes in H1 and V2 is the subset of nodes in H2. The check node set is denoted

by C. In the semi-structured E2RC codes, H2 has a base protograph structure of the form

proposed in Kim, etc. (2009). The base protograph shall be parameterized by the number

of check nodes in it, denoted by M . The H2 part of semi-structured E2RC codes is obtained

by simply replicating the base protograph an appropriate number of times. For example, the

case of M = 8 is shown in Fig. 4.1. Check nodes are connected to the set V1 by a random

interleaver (denoted Π in Fig. 4.1). We shall frequently need to refer to the protograph

representation of H2. Let Vp and Cp denote the variable node set and the check node set in

the protograph representation of H2. Let ε(vi) and ε(ci) denote the set of edges connected to

vi ∈ Vp and ci ∈ Cp respectively. We shall use εL(ci) to denote the set of edges connecting

ci and the random edge interleaver and use εR(ci) to denote the set of edges connecting ci
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and Vp, i.e., ε(ci) = εL(ci) ∪ εR(ci). Given a protograph structure on H2, the problem of code

design becomes one of finding good degree distributions for the variable nodes in V1 and that

for the edges in ∪ci∈CpεL(ci) (henceforth referred to as the left check degree distribution). In

our examples, we only consider concentrated or near-concentrated total check degrees. We

have found experimentally that these tend to give the best performance. Note that since the

H2 part is fixed, this implies that the left check degree distribution is also more or less fixed.

Accordingly in our design process we experiment with a few check degree distributions and

focus on optimizing the degree distribution for the nodes in V1.

We explain our design method in the context of the binary-input AWGN (BIAWGN) chan-

nel. It can be adapted to the BEC and other channels in a straightforward manner. Suppose

that we are given a channel noise variance σ2
n, the protograph specifying H2 and the left check

degree distribution. The code design problem is to find the degree distribution {λdv , v ∈ V1}

so as to minimize the gap between code rate R and channel capacity C (corresponding to σ2
n),

while constraining the maximum variable node degree to be dv,max. Denote the EXIT function

of the structured part by IE,S(IA,S). For a given {λdv , v ∈ V1}, the EXIT function of the

unstructured part (see Fig. 4.1) can be expressed as (according to (4.1))

IE,unS(IA,unS , σ
2
mch) =

∑
dv

λdvJ(
√

(dv − 1)[J−1(IA,unS)]2 + σ2
mch) (4.3)

The code design or optimization problem is formulated as

minimize : C −R

subject to : 1.

dv,max∑
dv=1

λdv = 1, λdv ≥ 0

2. IE,unS(IA,unS) > IA,S(IE,S)

for IA,unS = IE,S ∈ [0, 1)

Here, the second constraint is the zero-error constraint by ensuring the tunnel between the two

EXIT curves. It is easy to see that minimizing C−R for a fixed σ2
n is equivalent to maximizing∑dv,max

dv=1
λdv
dv

for v ∈ V1. The computation of IE,S(IA,S) will be elaborated on in Section 4.4.1.
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IE,unS(IA,unS) is a linear function of {λdv , v ∈ V1} as in (4.3). Therefore by a fine enough

discretization of the interval [0, 1), we can express the above optimization as a linear program.

In practice, to set up the second constraint, we need to find the inverse map IA,S(IE,S) by

using linear interpolation. We have found that a large number (say 104) of (IA,S , IE,S) pairs

for the function IE,S(IA,S) are necessary to ensure the accuracy of the inverse map IA,S(IE,S)

and the solution to the optimization problem. By solving the above optimization problem at a

certain channel parameter σ2
n, we get a code of rate corresponding to the {λdv} returned from

the optimization. To get an optimized code at rate Ro, we need to solve the above optimization

problem at closely spaced channel parameter levels below the Shannon limit corresponding to

Ro until we get a code rate close enough to Ro. This necessitates numerous computations of

IE,S(IA,S) and motivates the need for a fast method for computing IE,S(IA,S).

4.4.1 A New Method for Computing EXIT Function of the Structured Part

The usual approach for finding the EXIT function of a constituent code component is

proposed in Brink (2001) by using Monte Carlo simulations. A large number of Monte Carlo

simulations are needed for obtaining smooth EXIT functions. Moreover, this needs to be

repeated at many different channel parameters. This makes the process rather time-consuming.

Here, we present a fast and accurate method for computing EXIT functions of structured

code components of LDPC codes, such as the structured part of E2RC codes and that of IRA

codes, without resorting to Monte Carlo simulations.

For convenience, we use the notation

ER = ∪vi∈Vpε(vi) and EL = ∪ci∈CpεL(ci)

Note that ∪vi∈Vpε(vi) = ∪ci∈CpεR(ci). Suppose that the a priori inputs carried on e ∈ EL have

average mutual information IA,in and that v ∈ Vp has channel inputs parameterized by σ2
mch,v.

We are interested in finding IE , the average mutual information associated with the extrinsic

outputs carried on e ∈ EL after iterative decoding. For an edge e connected to node vi(ci),

we shall use the notation IviA,e(likewise IciA,e) to denote the mutual information describing the

a priori inputs on it and IviE,e(likewise IciE,e) the mutual information describing the extrinsic
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outputs on it. We set up the following system of equations for the given structured code

component. For e ∈ ER and vi ∈ Vp, we have

IviE,e = J

(√ ∑
e′∈ε(vi)\{e}

[J−1(IviA,e′)]
2 + σ2

mch,vi

)
. (4.4)

Similarly, for e ∈ ER and ci ∈ Cp,

IciE,e = 1− J
(( ∑

e′∈εL(ci)

[J−1(1− IA,in)]2 +
∑

e′∈εR(ci)\{e}

[J−1(1− IciA,e′)]
2

) 1
2
)

(4.5)

and for e ∈ EL and ci ∈ Cp,

IciE,e = 1− J
(( ∑

e′∈εL(ci)\{e}

[J−1(1− IA,in)]2 +
∑

e′∈εR(ci)

[J−1(1− IciA,e′)]
2

) 1
2
)
. (4.6)

For each edge e ∈ ER, there are two equations in the form of (4.4) and (4.5) respectively

and two unknown variables IviE,e(or I
cj
A,e), I

cj
E,e(or IviA,e) associated with it; while for each edge

e ∈ EL, there is one equation in the form (4.6) and one unknown variable IciE,e associated with

it. We want to compute IciE,e for e ∈ EL. There are totally 2|ER| + |EL| equations and the

same number of unknown variables involved in this system of equations. Note that the specific

expressions for this system of equations are totally dependent on the structure of the code

component. The main idea behind our method for computing the EXIT function is to find the

solution to this system of equations for a given value of IA,in and channel parameter. We now

present an intuitive method for solving this system of equations, which works in an iterative

manner by applying the sequence of updates described in equations (4.4), (4.5) and (4.6). The

details are given below.

1) Problem Instance.

Given a structured code component, solve the system of equations described in (4.4), (4.5)

and (4.6) above. The unknown variables involved in this system of equations are IviE,e(or I
cj
A,e),

I
cj
E,e(or IviA,e) for all e ∈ ER and IciE,e for all e ∈ EL. The known variables are IciA,e = IA,in for

all e ∈ EL, and the channel parameter σ2
n from which σ2

mch,vi
can be determined for each vi.

2) Initialization.

Initialize all unknown variables to be 0. Set a small value of εthresh = 10−6.
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3) Iterative Updates.

(a)Check node update.

For all e ∈ ER, compute IciE,e using equation (4.5). Check to see whether the norm of

the difference between this newly computed set of IciE,e and the previously computed ones

is smaller than εthresh. If yes, then terminate; otherwise, set I
vj
A,e = IciE,e if vj and ci are

connected by e.

(b)Variable node update.

For all e ∈ ER, compute IviE,e using equation (4.4). Set I
cj
A,e = IviE,e if cj and vi are

connected by e. Go to step 3(a).

4) Compute IciE,e for e ∈ EL.

For all e ∈ EL, compute IciE,e using equation (4.6). The average of these IciE,e is denoted by IE

and (IA,in, IE) is a point on the EXIT function.

The method can be adapted for computing EXIT functions over other channels by using

appropriate update equations. Moreover, it can be used to compute the EXIT function of the

structured part of other codes that have a succinct protograph representation such as IRA

codes.

We demonstrate the effectiveness of our method by comparing EXIT functions computed

by our method and by the Monte Carlo simulation based method for two cases: the structured

part of E2RC codes and that of IRA codes on BIAWGN channels respectively. The structured

part of the E2RC code has a protograph structure of size 128. All check nodes have degree 8.

To get smooth curves, we apply 106 a priori inputs in Monte Carlo simulations for computing

each point on the curves. As shown in Table 4.1, the maximum absolute error (MAE) between

the EXIT functions computed using the two methods is less than 0.0072.
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Table 4.1 Comparison of approaches for computing EXIT functions

AWGN: noise variance= 0.95775;104 (IA, IE) pairs generated

E2RC IRA

Method Proposed Simulation Proposed Simulation

Computing time (s) 3.7 24596 0.6 175886

MAE 0.0072 - 0.00719 -

4.4.2 Code Design Examples

In our first example, we design a semi-structured E2RC code with dv,max = 7 and check

degree distribution of

ρ6 = 0.339623, ρ7 = 0.660377

Thus, from a complexity perspective these codes are comparable to the first design example

in Section V in Song, etc. (2008). The mother code is of rate 0.5 and the H2 part has a

protograph structure of size M = 32. Our optimized code (referred to as code 0) is specified

by

λ3 = 0.4243, λ7 = 0.5757

for v ∈ V1 and has an asymptotic gap of 0.38 dB to capacity at rate 0.5. Fig. 4.3 gives the

simulation results of this code of block length 2048 bits generated by the algorithms in Tian,

etc. (2004), Ramamoorthy & Wesel (2004). For comparison, we also list the simulation

results of the reference code and original E2RC code from Song, etc. (2008). In this chapter,

our codes follow the designed puncturing patterns of original E2RC codes in Kim, etc. (2009)

to get all puncturing code rates. From the simulation results it is clear that our code is better

than the codes in Song, etc. (2008) for all code rates. In particular they do not suffer from

the high error floor problem of original E2RC codes at the mother code rate.

In our second example, we design another semi-structured E2RC codes with concentrated

check degree 8 and dv,max = 20. The optimized code (referred to as code 1) is given by

λ3 = 0.305825, λ7 = 0.213474, λ8 = 0.181737, λ20 = 0.298964
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for v ∈ V1 and it has an asymptotic gap of 0.217 dB to capacity at rate 0.5 which is smaller

than code 0. This is expected since dv,max is higher in this case. The simulation results of

code 1 of block length 16384 bits are given in Fig. 4.4. Also given are the simulation results

of the E2RC code that is constructed according to the degree distribution specified in Kim,

etc. (2009) (referred to as original E2RC). It shows that our code achieves slightly better

performance at rates near mother code rate but suffers a little at higher code rates.

We use the following terminology in this chapter. The predicted threshold refers to the

decoding threshold from asymptotic code performance analysis and the measured threshold

refers to the channel parameter where the code achieves BER = 10−4 in simulations. For our

code 0 of length 2048 bits, the measured threshold at rate 0.5 is 1.47 dB which is 0.9 dB away

from the predicted one. For our code 1 of length 16384 bits, this gap is only 0.4 dB.

4.4.3 Puncturing Performance Analysis and Joint Optimization of Semi-Structured

E2RC Codes

The puncturing performance of a given code is specified in terms of its decoding thresholds

at all punctured code rates. The given semi-structured E2RC codes are specified by λdv , v ∈ V1

and the knowledge of the protograph structure of the structured part. For a given channel

parameter, we can compute the two EXIT functions using (4.3) and the approach of Section

4.4.1. Note that when computing EXIT functions at different puncturing code rates, we follow

the designed puncturing pattern of E2RC codes. The decoding threshold at a given code rate

is determined by finding the channel parameter where the two EXIT curves (computed under

the puncturing pattern at that rate) just begin to separate.

Our puncturing performance analysis of code 1 suggests that it has asymptotic decoding

thresholds of around 0.40, 0.85, 1.40, 2.45, 3.44 dB at rates 8
16 ,

8
14 ,

8
12 ,

8
10 and 8

9 respectively.

The measured thresholds at these rates for the code of block length 16384 bits based on the

simulation results in Fig. 4.4 are around 0.80, 1.22, 1.75, 2.78, 3.76 dB, which are consistent

with the predicted ones with gaps uniformly around 0.35 dB.

Joint Optimization of Semi-Structured E2RC Codes
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Figure 4.3 Comparison between our code 0 and the reference code in Song,

etc. (2008) of block length 2048 bits. The code rates are

0.5, 0.6, 0.7, 0.8 and 0.9 from left to right. The figure on the top

(bottom) corresponds to BER (FER).
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Figure 4.4 Comparison between our second code example and original

E2RC code in Kim, etc. (2009) of block length 16384 bits.

The code rates are 0.5, 0.5714, 0.6667, 0.8 and 0.8889 from left

to right.

We now demonstrate that we can design our codes such that they have a small gap to

capacity at all puncturing rates. This is because our puncturing pattern is deterministic and

allows the determination of the asymptotic threshold at any puncturing rate for any given

{λdv , v ∈ V1}. Let R be a specified set of code rates where we want to optimize the code. Let

σ(g,Ri) denote the channel noise parameter that is at a gap of g from the channel parameter

corresponding to the Shannon limit at rate Ri. Let IA,S(IE,S , σ(g,Ri)) denote the plot of IA,S

vs. IE,S under the puncturing pattern corresponding to rate Ri, at the channel parameter

σ(g,Ri). The notation IA,unS(IA,unS , σ(g,Ri)) will be used analogously. We can formulate the

joint optimization problem as minimizing the maximum gap to capacity at all rates in R as

follows.

Joint optimization algorithm

for g = gmin : gmax
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Solve the following linear program optimization problem

maximize :

dv,max∑
dv=1

λdv
dv

subject to : 1.

dv,max∑
dv=1

λdv = 1, λdv ≥ 0,

2. IE,unS(IA,unS , σ(g,Ri)) > IA,S(IE,S , σ(g,Ri))

for IA,unS = IE,S ∈ [0, 1), for all Ri ∈ R

if mother code rate corresponding to {λdv} is acceptable

break; return {λdv} and g.

endif

endfor

Note that the second set of constraints is the zero-error constraint by ensuring an iterative

decoding tunnel for all EXIT charts at all the required code rates. We can obtain all the

required EXIT functions relatively quickly using our approach outlined previously under the

puncturing patterns for each Ri. To obtain optimized {λdv}, we basically keep increasing g

until we get the desired code rate. The code specified by λdv is guaranteed to have asymptotic

performance gap to capacity no larger than g at all code rates in R.

We designed a semi-structured E2RC code that was jointly optimized across the rate range

8
16 ∼

8
9 , where M = 32, all check nodes have degree 8 and dv,max = 20. The code is specified

by

λ3 = 0.309090, λ6 = 0.278794, λ20 = 0.412116

Fig. 4.5 gives the simulation results for the code of block length 16384 bits (listed as code

2). Also plotted are the simulation results in Fig. 4.4 for code 1 and original E2RC code

from Section 4.4.2. The puncturing performance analysis suggests that code 1 has asymptotic

performance gaps around 0.21, 0.32, 0.34, 0.41, 0.405 dB to capacity at rates 8
16 ,

8
14 ,

8
12 ,

8
10 and

8
9 respectively while code 2 has much more uniform gaps of around 0.29, 0.30, 0.25, 0.29, 0.295

dB to capacity at these rates. The simulation results in Fig. 4.5 also suggest uniformly

better performance of code 2 compared to code 1 across the range of rates. Moreover, the
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measured thresholds of the two codes at all rates in simulations are in good agreement with

the predicted thresholds. At all code rates, the gap between the measured threshold and the

predicted threshold is around 0.35 dB. Finally, we note that code 2 achieves better or at least

the same performance as original E2RC code at all rates.

The methods described in this section apply more generally to codes that have a structured

component with a protograph representation, such as IRA codes. We applied our method to

the design of IRA codes as well and obtained jointly optimized codes with performance gaps

around 0.27, 0.30, 0.195, 0.27, 0.29 dB to capacity at rates 8
16 , 8

14 , 8
12 , 8

10 and 8
9 respectively.

Though not presented here, the simulation results of the IRA code are almost identical to the

jointly optimized E2RC code (code 2) discussed above.

To the best of our knowledge, a joint optimization algorithm that minimizes the gap to

capacity simultaneously across all code rates has not been considered previously in the liter-

ature. In Ha, etc. (2004 - 1), the authors found the optimal puncturing patterns for two

optimized mother codes (referred to as Ha code 1 and Ha code 2) and also gave their asymp-

totic puncturing performance using Gaussian approximation based density evolution. In Fig.

4.6, we compare the asymptotic thresholds of their codes with our code families. Note that our

codes have the same maximum variable node degree and slightly smaller average variable node

degree compared to the codes in Ha, etc. (2004 - 1). We observe that the gaps to capacity

for our codes remain more or less the same across the range of rates, whereas the codes in Ha,

etc. (2004 - 1) exhibit a larger gap to capacity at higher code rates.

4.5 Protograph E2RC Codes Construction

In this section, we introduce the construction of a class of structured E2RC-like codes

based on protographs. The basic idea in these codes is to impose a protograph structure

on the systematic part H1 of the parity-check matrix as well (in addition to the protograph

structure on H2). We obtain a family of protographs with asymptotic gaps to capacity no

larger than 0.28 dB across a wide range of rates when the maximum variable node degree is

twenty. These codes have excellent finite length performance as well. In this part of the work,
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Figure 4.5 Comparison between two semi-structured E2RC codes op-

timized at mother code rate (code 1) and simultaneously

optimized at multiple rates (code 2) and original E2RC

code of block length 16384 bits. The code rates are

0.5, 0.5714, 0.6667, 0.8 and 0.8889 from left to right.

Figure 4.6 Asymptotic performance comparison between our codes and

those from Ha, etc. (2004 - 1).
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we use the reciprocal channel approximation of density evolution for computing the threshold

for a given protograph Thorpe (2003), Chung (2000), Richardson (2009). The construction

algorithm goes as follows.

1) Find a good high-rate protograph.

Using density evolution we first identify a high-rate protograph (starting protograph) with a

low threshold.

2) Use check-splitting to obtain lower-rate protographs with low thresholds.

From the starting protograph, we perform check splitting in a systematic manner to obtain a

family of good rate-compatible punctured protographs where the parity part has the E2RC

structure. These correspond to different code rates of the rate-compatible code family.

3) Construct the LDPC code by replacing protograph edges with carefully chosen circulant per-

mutations.

With the protograph of mother code rate constructed from above steps, a larger graph defining

the LDPC code is constructed by replacing the protograph edges with appropriately chosen cir-

culant permutations by using techniques in Hu, etc. (2001), Tian, etc. (2004), Ramamoorthy

& Wesel (2004), Weng, etc. (2004).

In the sequel we shall attempt to explain the construction process by means of an example.

However, it should be clear that the techniques are applicable in general.

4.5.1 Starting Protograph

A protograph of size M0 ×N0 (M0 - number of constraint nodes, N0 - number of variable

nodes) with low threshold serves as a starting point; we call it the starting protograph. Given

the desirable code rate range

Rmin ≤ R ≤ Rmax
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we decide the size of the mother code protograph M×N and the size of the starting protograph

M0 ×N0, such that

N −M
N

≤ Rmin,
N0 −M0

N0
≥ Rmax and N −M = N0 −M0

These conditions guarantee that the desirable code rate range is achievable by the construction.

In addition, these parameters should be kept relatively small, say less than 50, to keep the

construction complexity manageable. The construction will give a family of protographs with

code rates ranging from N−M
N to N0−M0

N0
. We impose the constraint that the degree of all

variable nodes in the starting protograph is at least three. This is because the presence of

degree two nodes causes a relatively high error floor.

In our example, Rmin = 0.5, Rmax = 0.85, and the size parameters are decided as

M0 = 1, N0 = 9 and M = 8, N = 16

The protograph shown in Figure 4.7 is used as our starting protograph. It consists of one check

node and nine variable nodes of degree {24,8,3,3,3,3,3,3,3} respectively. It has a threshold of

3.27 dB which is 0.24 dB away from the theoretical limit of 3.03 dB.

Figure 4.7 Example of a starting protograph. The number next to an edge

denotes the number of parallel edges between the variable and

the check node.

4.5.2 Check-Splitting

Consider a check node c of degree d in the protograph. The operation of check-splitting

proceeds as follows. We split c into two check nodes c1 and c2, such that the degree of c1 is d1
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and the degree of c2 is d2 and d = d1 +d2. Next we introduce a punctured variable node v′ and

introduce edges c1− v′ and c2− v′, so that the degree of v′ is two. This is shown pictorially in

Fig. 4.8.

Figure 4.8 Check c with degree-5 is divided into c1 and c2. The new check

nodes c1 and c2 are connected by a new degree-2 variable node

v6.

Check-splitting was used in Divsalar. etc. (2006) to construct protograph LDPC codes

with linear minimum distance. A rigorous proof was given in Pishro-Nik & Fekri (2007) about

the equivalence of the asymptotic decoding performance between a non-punctured high-rate

LDPC code and a punctured low-rate LDPC code whose parity-check matrix can be built from

that of the high-rate LDPC code through check-splitting. This is confirmed by our density

evolution analysis on the first two graphs in Figure 4.8, which give the same asymptotic iterative

decoding threshold.

In this work we use check-splitting as follows. We start with the high-rate protograph

(as explained above) and split its check nodes in a specific manner. To obtain lower rates,

after splitting a given check node, we convert the newly introduced punctured node into a

transmitted node (e.g. see G3 in Fig. 4.8). By applying check-splitting to a protograph of

higher rate codes repeatedly, we finally arrive at the protograph of low rate mother code. In

fact, the protographs produced in the check-splitting process form a family of rate-compatible

protographs if we consider the newly added degree-two variable nodes in check-splitting as

parity nodes that are used to provide incremental redundancy. However we note that the

check-splitting needs to be done carefully (as discussed later), otherwise we may not have good

code performance across all rates.
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Table 4.2 Starting protograph

old new

v0 v1 v2 v3 v4 v5 v6 v7 v8

c0 24 8 3 3 3 3 3 3 3 -

4.5.3 Constructing Protographs with E2RC Like Structure

In this subsection we present a specific check-splitting technique that ensures the parity

part of the code has the E2RC structure. In what follows we call the original variable nodes

of degree at least three in the starting protograph, old nodes and the variable nodes of degree

two introduced due to check-splitting, new nodes.

During the construction, each check node has some connections with the old nodes and

some connections with the new nodes. Accordingly, for a given check node we define its old

node degree to be the number of connections to the old nodes and its new node degree to be

the number of connections to the new nodes. Consider a check node c0. When we split c0 into

c01 and c02, a decision needs to be made on how the connections of c0 are divided between

them. To obtain the E2RC structure, c01 is allocated all of c0’s new node degree. The parity

node that is introduced in the check-splitting process has one connection to both c01 and c02

(refer to Theorem 22 for a complete proof). The old node degree also needs to be divided

between c01 and c02 in a manner that ensures that the threshold of the new protograph is low.

The division of the old node degree is discussed in more detail in the next subsection.

The construction proceeds in different stages. In each stage, we perform check-splitting on

all check nodes in the current protograph. We now use the starting protograph in Figure 4.7

to demonstrate the process. Note that here we have M0 = 1. We want to obtain a protograph

with M = 8. Thus in this case we shall have log2 8 = 3 stages in the construction.

Let Mns denote the number of check nodes in the current protograph at the beginning of

stage ns. In this stage, we perform check-splitting on each of the Mns check nodes. Each

check-splitting operation on the current protograph generates a protograph of next lower code

rate. So at stage ns, a set of Mns protographs of decreasing rates are generated. The order in
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Table 4.3 The first splitting stage

old new

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9

c01 12 4 2 1 2 1 2 1 2 1

c02 12 4 1 2 1 2 1 2 1 1

Table 4.4 The second splitting stage

old new

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10

c011 6 2 1 1 1 0 1 1 1 1 1

c012 6 2 1 0 1 1 1 0 1 0 1

c02 12 4 1 2 1 2 1 2 1 1 0

which the check nodes are chosen for splitting can affect the thresholds at those rates.

We now show the first and second splitting stages for protograph in Figure 4.7. In the first

stage, check-splitting on the single check node generates a new protograph of rate 8
10 .

In the second stage, there are two check nodes in the protograph for splitting. Density

evolution analysis tells us that performing check-splitting on c01 first gives a protograph of

code rate 8
11 with a better decoding threshold than that of protograph generated by performing

check-splitting on c02. So in this stage, we first split c01 to generate a protograph of rate 8
11

and then split c02 to generate a protograph of rate 8
12 . The corresponding protographs are

shown below.

Table 4.5 The third splitting stage

old new

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11

c011 6 2 1 1 1 0 1 1 1 1 1 0

c012 6 2 1 0 1 1 1 0 1 0 1 0

c021 6 2 1 1 0 1 1 1 0 1 0 1

c022 6 2 0 1 1 1 0 1 1 0 0 1
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The third stage proceeds in a similar manner. Refer to Fig. 4.9 for a graphical illustration

of the construction process. Note that following this procedure we get node v9 is 2-SR, while

nodes v10 and v11 are 1-SR. More generally, we can show that when the algorithm finishes

executing stage ns, it adds Mns new parity nodes all of which are 1-SR. Consider parity nodes

that existed at the beginning of stage ns as k-SR nodes. We show in Theorem 22 that at the

end of stage ns, all those nodes become (k+ 1)-SR. It turns out that the construction ensures

that half of the parity nodes in the final protograph are 1-SR, one-fourth are 2-SR and so on

i.e. our construction technique results in protographs that have the E2RC structure.

Figure 4.9 Protograph construction from check-splitting.

We puncture the parity nodes of the resultant protograph to obtain higher rates. The

puncturing order is the inverse of the order in which the parity nodes are added during the

construction i.e. a parity node that was added at the end will be punctured first, a parity node

that was added at the penultimate stage will be punctured second and so on. This puncturing

order ensures that the gap to capacity at the different rates is as predicted by the construction

process.

4.5.4 Deciding Splitting Patterns

As pointed out before, in check-splitting, the old node degree of a given check node can

be divided among the new check nodes in many ways. Now we explain how to decide proper

splitting patterns to ensure good code performance. Let c0 be the check node that needs
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to be split. Let s0 be the vector of connections between c0 and the old nodes e.g. s0 =

[24 8 3 3 3 3 3 3 3]. The splitting pattern refers to the set of vectors s01 = [12 4 2 1 2 1 2 1 2]

and s02 = [12 4 1 2 1 2 1 2 1] that determine the connections between the nodes c01 and c02

and the old nodes. Thus s0 = s01 + s02.

Our search for good splitting patterns is guided by two main points.

a) Trade-off between the performance of high-rate and low-rate protographs.

In our experiments, we have found that there exists a tradeoff between the performance of

high-rate and low-rate protographs during the construction. For example, it is possible to

obtain very low thresholds for the higher rate protographs, however this typically comes

at the expense of higher thresholds for the low-rate protographs in a later stage of the

construction.

b) Uniform splitting patterns give good performance.

Note that considering all possible splitting patterns at all possible stages is essentially

computationally infeasible since the number of possible splitting patterns grows exponen-

tially. We have found that splitting patterns that split the connections roughly equally

between the new check nodes have good performance across all code rates in the family.

This reduces the search space a lot and it becomes possible to perform density evolution

analysis (using the fast reciprocal channel approximation Chung (2000)) to determine

the thresholds.

In the tables shown below we present two of the protographs that we have constructed using

the construction algorithm described above. Both protographs are constructed from starting

protograph in Figure 4.7. At the bottom of each table we show the gap to Shannon limit for the

protograph at different puncturing levels for rates 8/9−8/16 from left to right. For protograph-

1 , there is a good balance on the code performance at all code rates. For protograph-2, we

chose the splitting patterns to lower the threshold for the high rate protographs, which resulted

in somewhat worse performance at the low code rates.
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Table 4.6 Mother code protograph-1

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

3 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0

3 1 0 1 0 0 1 0 1 0 0 0 1 0 0 0

3 1 0 0 1 0 1 0 0 0 1 0 0 0 1 0

3 1 1 0 0 1 0 0 1 0 0 0 0 0 1 0

3 1 0 1 0 0 1 0 0 1 0 1 0 1 0 0

3 1 1 0 0 1 0 1 0 0 0 0 0 1 0 0

3 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1

3 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1

Gap to Shannon limit in dB (rates 8/9 - 8/16)

0.24 0.25 0.22 0.21 0.24 0.26 0.27 0.26

Table 4.7 Mother code protograph-2

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 v10 v11 v12 v13 v14 v15

2 0 1 1 0 1 0 1 1 1 1 0 1 0 0 0

4 2 0 1 0 1 0 1 1 0 0 0 1 0 0 0

3 0 0 0 0 0 2 0 0 0 1 0 0 1 0 0

3 2 1 0 2 0 0 0 0 0 0 0 0 1 0 0

3 0 0 0 0 0 0 0 0 1 0 1 0 0 0 1

3 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1

3 0 0 0 1 0 1 0 0 0 0 1 0 0 1 0

3 4 1 0 0 0 0 0 1 0 0 0 0 0 1 0

Gap to Shannon limit in dB (rates 8/9 - 8/16)

0.24 0.17 0.19 0.24 0.21 0.23 0.35 0.36
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4.5.5 Comparison with Previous Results

Here we give comparisons with some existing results in the literature. The asymptotic per-

formance comparison between the protograph E2RC code family represented by protograph-1

above and the AR4JA code family in Divsalar, etc. (2006) is given in Figure 4.10. Higher

rate codes in the protograph E2RC code family are obtained by puncturing parity nodes of

the same type as v15, v14,...v9 in turn. We note that the thresholds of our protographs are

closer to the Shannon limit than that of AR4JA codes for all the rates 1/2, 2/3 and 4/5. The

average variable node degree of our codes is a little higher than that of AR4JA family. Note,

however that the codes in Divsalar, etc. (2006) are not rate-compatible punctured codes.

Figure 4.10 Asymptotic performance comparison between protograph

E2RC codes and AR4JA codes.

4.6 Conclusions

The E2RC codes were proposed in Kim, etc. (2009) as a promising class of rate-compatible

codes. In this work we introduced semi-structured E2RC-like codes and protograph E2RC

codes. We developed EXIT chart based methods for the design of semi-structured E2RC-

like codes that allow us to determine near-optimal degree distributions for the systematic

part of the code while taking into account the structure of the deterministic parity part. We

presented a novel method for finding EXIT functions for structured code components that have

a succinct protograph representation that is applicable in other scenarios as well. This allows



www.manaraa.com

97

us to analyze the puncturing performance of these codes and obtain codes that are better

than the original construction. Using our approach we are able to jointly optimize the code

performance across the range of rates for our rate-compatible punctured codes. Finally we

consider E2RC-like codes that have a protograph structure (called protograph E2RC codes)

and propose design rules for rate-compatible protographs with low thresholds. These codes are

useful in applications since the protograph structure facilitates implementation. For both the

semi-structured and protograph E2RC families we obtain codes with small gaps to capacity

across the range of rates.

Theorem 22 Our construction generates E2RC-like codes structure, that is, at the end of

stage k + 1 there will be M0 · 2k 1-SR nodes, M0 · 2k−1 2-SR nodes, . . . , and M0 (k+1)-SR

nodes.

Proof

We first recall the precise construction rule. Let c0 be a check node with a certain number

of connections to new nodes of degree-2. When c0 is split into c01 and c02, c01 inherits all of c0’s

connections to new nodes and both c01 and c02 have one connection with the newly introduced

variable node.

Suppose that the starting protograph is of size M0 × N0. At the end of stage k of the

construction algorithm, it is clear that there will be M0 · 2k check nodes and M0(2k − 1) new

degree-2 parity nodes. Our aim is to show that this construction algorithm results in an H2

part with the E2RC structure. i.e. at the end of stage k of the algorithm, there are M0 · 2k−1

1-SR nodes, M0 · 2k−2 2-SR nodes, . . . , and M0 k-SR nodes. We proceed by induction.

Base Case. At the end of the first stage, we will have 2M0 check nodes and M0 new

degree-2, 1-SR parity nodes.

Inductive Step. Suppose that the statement is true at the end of stage k. We will show that

it is true at the end of stage k+ 1. To see this note that at the end of stage k+ 1 we will have

M0 · 2k+1 check nodes formed by splitting the check nodes at the end of stage k. According

to the construction algorithm, M0 · 2k check nodes will inherit the previous connections while
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the remaining will have just one connection to the M0 · 2k newly introduced degree-2 variable

nodes. Therefore we will have at least M0 · 2k 1-SR nodes at the end of stage k + 1. Next

we note that any node that was of type α-SR at the end of stage k will now become of type

(α+1)-SR. This is because each of the check nodes it is connected to will have one additional

connection. This implies that at the end of stage k + 1 there will be M0 · 2k 1-SR nodes,

M0 · 2k−1 2-SR nodes, . . . , and M0 (k+1)-SR nodes. This shows the required result.
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CHAPTER 5. SUMMARY AND DISCUSSION

This thesis describes an improved combinatorial algorithm for computing the unicast ca-

pacity of deterministic wireless networks and considers design and analysis of rate-compatible

LDPC codes that have potential applications in communication systems with varying chan-

nel conditions, like the channels in the wireless networks that is considered above. The first

part of the work contributes to efficiently computing the capacity of deterministic wireless

networks which in turn provides insight into the study of capacity and transmission schemes

in the original wireless networks. The second part of the work considers design and analysis

of efficient and practical channel codes that are expected to have uniformly good performance

under varying channel conditions in wireless networks.

Characterizing the capacity of wireless networks has been a challenging problem for decades.

The deterministic channel model for wireless networks, the ADT model by Avestimehr, etc.

(2007 - 1), has been a promising approach to study the wireless information flow. The unicast

and multicast capacities of deterministic wireless networks were characterized by the authors

in the original paper for the model Avestimehr, etc. (2007 - 1). However efficient algorithms

are not implied by the characterization. Several works have been proposed on solving the

problem efficiently. The first work on computing unicast capacity of deterministic wireless

networks was by Amaudruz & Fragouli (2009). Our work improves upon the original algorithm

by Amaudruz & Fragouli for computing the unicast capacity of linear deterministic wireless

networks. We amend the original algorithm so that it finds the unicast capacity correctly

for any given deterministic networks. Moreover we fully explore several useful combinatorial

features intrinsic in the problem which lead to reduced complexity. Our improved algorithm

applies with any size of finite field associated with the ADT model defining the network. Our
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improved algorithm proves to be very competitive when comparing with other algorithms,

Yazdi & Savari (2009), Goemans, etc. (2009), on solving the same problem in terms of

complexity.

After identifying the capacity and corresponding transmission scheme for a wireless net-

work, efficient and practical channel codes are desirable to fulfill the goal of approaching the

theoretical limit or capacity established. In the second part, our work on the design and anal-

ysis of E2RC codes aims to fulfill this goal. Moreover, the previous work on the design and

analysis of LDPC codes are all targeting at a specific code rate and no work is known on the

design and analysis of rate-compatible LDPC codes so that the code performance at all code

rates in the family is manageable and predictable. In our work, we proposed algorithms for the

design and analysis of rate-compatible LDPC codes with good puncturing performance and

make the code performance at all code rates manageable and predictable. Our work is based

on E2RC codes, while our approaches in the design and analysis can be applied more generally

not only to E2RC codes, but to other suitable scenarios, like the design of IRA codes (Jin,

etc. (2000)). Most encouragingly, we obtain families of rate-compatible codes whose gaps to

capacity are at most 0.3 dB across the range of rates when the maximum variable node degree

is twenty, which is very promising compared with other existing results.

Efficiently-encodable rate-compatible LDPC codes are expected to have good error correc-

tion performance under varying channels conditions like in wireless networks. E2RC codes

were proposed as a promising class of rate compatible codes. We first presented systematic

design and analysis of semi-structured E2RC codes using EXIT chart. We proposed a new

analytical method of computing the EXIT functions of structured parts of E2RC codes with-

out resorting to Monte Carlo simulations. The design of capacity-approaching E2RC code

was accomplished by linear programming. By exploring the E2RC structure and its designed

puncturing pattern, we present the method for puncturing performance analysis and propose

the joint optimization algorithm for designing rate-compatible punctured codes that are si-

multaneously optimized at any specified set of code rates. Our jointly optimized codes with

dv,max = 20 have performance gaps to capacity no larger than 0.3 dB across the entire rate
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range.

We then proposed a construction of rate-compatible codes based on protographs inspired

by the E2RC codes. Protograph E2RC codes have protograph representations which facilitate

their asymptotic performance analysis and allow the implementation of high speed decoders.

The construction starts with a high rate protograph with low threshold. Protographs of lower

rate codes are iteratively derived from the higher rate protographs via the process of check-

splitting. The check-splitting process is specially designed to ensure that the parity nodes in the

protograph have the E2RC structure. Furthermore the construction process guided by density

evolution also produces protographs that have low thresholds at all rates. Thus, it introduces

a systematic technique for the design of E2RC-like codes. Both asymptotic performance

analysis and simulation results demonstrate that the protograph E2RC code family has good

performance across all code rates.
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APPENDIX

IMPLEMENTATION OF DENSITY EVOLUTION FOR PROTOGRAPHS

Based on the description of Appendix B in Richardson & Urbanke (2008), the author

implements the density evolution for protographs and uses it in the work in this thesis. This

chapter gives the implementation Matlab codes that are used throughout this thesis.

.1 Instructions

This is a brief introduction to the free software of density evolution functions for computing

the asymptotic decoding threshold of a given protograph LDPC code based on its protograph

representation.

.1.1 Software Package

• DEFuncSCZ2010.m, the main file with the calling function DEFuncSCZ2010,

• cap func.mexw64, helper function for computing capacity based on a given channel pa-

rameter and

• cap inv func.mexw64, another helper function for deriving the threshold of channel pa-

rameter giving a capacity/rate value

.1.2 Software Usage

Put cap func.mexw64 and cap inv func.mexw64 in the same folder as DEFuncSCZ2010

function. Call DEFuncSCZ2010(filename) for running the algorithm.
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.1.3 Input

Input filename is a string of filename containing the protograph description of the given

protograph LDPC codes.

Format for the protograph representation: it’s the adjacency matrix description of the

corresponding Tanner graph where rows correspond to check nodes and columns correspond

to variable nodes.

.1.3.1 Example

{24 8 3 3 3 3 3 3 3} represents a protograph of one check node and nine variable nodes and

the number of connections between them are {24,8,3,3,3,3,3,3,3} respectively. The protograph

is shown in Fig. A.1.

Figure A.1 Protograph example

.1.4 Outputs

it is under the assumption of binary input AWGN channel.

• the code rate of the given protograph LDPC codes

• the asymptotic decoding threshold computed from density evolution

• the Shannon theoretical decoding threshold for this code rate

• the gap in dB between the asymptotic decoding threshold of the given LDPC codes and

the theoretical decoding threshold
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.2 Matlab Implementation of Density Evolution

%———————————————————————————————————————

% Free software: Density evolution functions for computing the asymptotic decoding threshold

% of a given protograph LDPC code based on its protograph representation

% Copyright: Cuizhu Shi, Iowa State University

% These codes may be used freely for academic, or non-commercial purposes

% Date: Generated 03/01/2008, last revision: 02/15/2010

%———————————————————————————————————————

function DEFuncSCZ2010(filename)

iter=2000;

horg=textread(filename);

sizem=size(horg);

MM=sizem(1,1);

NN=sizem(1,2);

h=zeros(1,MM*NN);

for i=1:1:MM

for j=1:1:NN

h(1,(i-1)*NN+j)=horg(i,j);

end

end

lowthres=0;

highthres=10;

stepini=1;
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rate=(NN-MM)/(NN);

if (rate>1)&&(rate<0)

fprintf(”error rate”);

end

results=cap inv func(rate);

del ther=1/sqrt(results);

stope=10−3;

stop0=0;

L=sum(h6= 0);

delta=0;

thresh=0;

edgenum=zeros(1,MM*NN);

edgepos=zeros(1,L);

k=0;

for i=1:1:MM*NN

if h(1,i) 6= 0

k=k+1;

edgenum(1,i)=k;

edgepos(1,k)=i;

end

end

for stepii=stepini:1:4

intstep=10−stepii;
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% run DE for each channel parameter

for kkkk=1:1:floor((highthres-lowthres)/intstep)+1

delta=lowthres+(kkkk)*intstep;

if delta>del ther-10−10

thresh=delta-intstep;

lowthres=thresh;

break;

end

m0=1/(delta2);

mu=zeros(1,L);

mv=m0*ones(1,L);

for iteration=1:1:iter

stop0=1;

mu=zeros(1,L);

for i=1:1:L

rowip=edgepos(1,i);

for j=1:1:NN

specp=(ceil(rowip/NN)-1)*NN+j;

if h(1,specp) 6= 0

if (specp) 6=rowip

mu(1,i)=mu(1,i)+h(1,specp)*cap inv func(1-cap func(mv(1,edgenum(1,specp))));

end

if (specp)==rowip

if h(1,specp)>1

mu(1,i)=mu(1,i)+(h(1,specp)-1)*cap inv func(1-cap func(mv(1,edgenum(1,specp))));

end

end

end
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end

if mu(1,i)>stope

stop0=0;

end

end

if stop0==1

break;

end

mv=m0*ones(1,L);

for i=1:1:L

rowip=edgepos(1,i);

for j=1:1:MM

tmpnumber=mod(rowip,NN);

if tmpnumber==0

tmpnumber=NN;

end

specp=(j-1)*NN+tmpnumber;

if h(specp) 6=0

if (specp) 6=rowip

mv(1,i)=mv(1,i)+h(specp)*cap inv func(1-cap func(mu(1,edgenum(1,specp))));

end

if (specp)==rowip

mv(1,i)=mv(1,i)+(h(specp)-1)*cap inv func(1-cap func(mu(1,edgenum(1,specp))));

end

end

end

end
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end

if stop0==0

thresh=delta-intstep;

lowthres=thresh;

break;

end

end % end of each delta

end

dB=10*log10(1/(2*rate*thresh2);

shann=10*log10(1/(2*rate)*results);

str=sprintf(’DEFunc: rate=%.3f,threshold=%f/%f dB,Shann=%f/%f dB,gap=%f dB’,

rate,thresh,dB,del ther,shann,dB-shann);

disp(str);

res=dB;

If we run the DEFuncSCZ2010 function on the given example in Fig. A.1, we will get

its decoding threshold 3.27dB. Another example is from Chapter 4, that is a protograph of

{20,8,3,3,3,3,3,3,3} which has a decoding threshold 3.27dB (note here we rounded the threshold

value to the second digit. This function was used in computing the decoding thresholds for all

protographs in our work in Chapter 4.



www.manaraa.com

109

BIBLIOGRAPHY

Tom Richardson, Ruediger Urbanke (2008). Modern Coding Theory. Cambridge University

Press, May 2008

Amir Salman Avestimehr and Suhas N. Diggavi and David N C. Tse (2007). A Deterministic

Approach to Wireless Relay Networks. Proceedings of Allerton Conference on Communica-

tion, Control and Computing, Illinois, Sep. 2007

Amir Salman Avestimehr and Suhas N. Diggavi and David N C. Tse (2007). Wireless Net-

work Information Flow. Proceedings of Allerton Conference on Communication, Control and

Computing, Illinois, Sep. 2007.

C. E. Shannon (1948). A Mathematical Theory of Communication. The Bell System Technical

Journal, volume 27, pages 379-423, 623-656, Jul., Oct. 1948

Thomas M. Cover and Joy A. Thomas (2006). Elements of Information Theory. A John Wiley

& Sons, Inc., 1991

Amir Salman Avestimehr and Suhas N. Diggavi and David N C. Tse (2009). Wireless Network

Information Flow: A Deterministic Approach. http://arxiv.org/abs/0906.5394, 2009

Ahlswede, R. and Ning Cai and Li, S.-Y.R. and Yeung, R.W. (2000). Network information

flow. Information Theory, IEEE Transactions on, vol. 46, pp. 1204C1216, 2000

Aurore Amaudruz and Christina Fragouli (2009). Combinatorial Algorithms for Wireless In-

formation Flow. Proceedings of the Twentieth Annual ACM-SIAM Symposium on Discrete

Algorithms, page 555 - 564, Jan. 2009



www.manaraa.com

110

S. M. Sadegh Tabatabaei Yazdi and Serap A. Savari (2009). A Combinatorial Study of Linear

Deterministic Relay Networks. Forty-Seventh Annual Allerton Conference on Communica-

tion, Control, and Computing, 2009

Michel X. Goemans and Satoru Iwata and Rico Zenklusen (2009). An Algorithmic Framework

for Wireless Information Flow. Forty-Seventh Annual Allerton Conference on Communica-

tion, Control, and Computing, 2009

Javad Ebrahimi and Christina Fragouli (2009). Combinatiorial Algorithms for Wireless Infor-

mation Flow. http://arxiv.org/abs/0909.4808, Sep. 2009

R. Motwani and P. Raghavan (1995). Randomized Algorithms. Cambridge University Press,

1995

Claude Berge (1957). Two Theorems in Graph Theory. Proceedings of the National Academy

of Sciences, vol. 43, no. 9, pages 842 - 844, Sep. 1957

Thomas H. Cormen and Charles E. Leiserson and Ronald L. Rivest and Clifford Stein (2001).

Introduction to Algorithms. MIT press, Cambridge, MA, Second Edition. 2001

Robert G. Gallager (1963). Low Density Parity Check Codes. MIT press, Cambridge, MA,

1963

M. Tanner (1981). A Recursive Approach to Low Complexity Codes. IEEE Trans. Inform.

Theory, vol. IT-27, no. 5, pages 533 - 547, Sep. 1981

Jeongseok Ha and Jaehong Kim and Steven W. McLaughlin (2004). rate-Compatible Punctur-

ing of Low-Density Parity-Check Codes. IEEE Trans. Inform Theory, vol. 50, no. 11, pages

2824 - 2836, Nov. 2004

Jeongseok Ha and Jaehong Kim and Steven W. McLaughlin (2004). Puncturing for Finite

Length Low-Density Parity-Check Codes. IEEE Int. Symp. Inform. Theory, Chicago, pages

152, Jun. 2004



www.manaraa.com

111

Jeongseok Ha and Jaehong Kim and Demijan Klinc and Steven W. McLaughlin (2006). Rate-

Compatible Punctured Low-Density Parity-Check Codes with Short Block Lengths. IEEE

Trans. Inform. Theory, vol. 52, no. 2, pages 728 - 738, Feb. 2006

Guosen Yue and Xiaodong Wang and Mohammad Madihian (2007). Design of Rate-Compatible

Irregular Repeat Accumulate Codes. IEEE Trans. Commun., vol. 55, no. 6, pages 1153 -

1163, Jun. 2007

Mohammad R. Yazdani and Amir H. Banihashemi (2004). On Construction of Rate-

Compatible Low-Density Parity-Check Codes. IEEE Comm. Letters, vol. 8, no. 3, pages

159 - 161, Mar. 2004

Jaehong Kim and Woonhaing Hur and Ramamoorthy, A. and McLaughlin, S.W. (2006). De-

sign of Rate-Compatible Irregular LDPC Codes for Incremental Redundancy Hybrid ARQ

Systems. IEEE Int. Symp. Inform. Theory, pages 1139 - 1143, Jul. 2006

Jaehong Kim and Aditya Ramamoorthy and Steven W. McLaughlin (2009). Design of

Efficiently-Encodable Rate-Compatible Irregular LDPC Codes. IEEE Trans. on Commu-

nications, vol. 57, no. 2, pages 365 - 375, Feb. 2009

J. Thorpe (2003). Low Density Parity Check (LDPC) Codes Constructed from Protographs.

JPL INP Progress Report 42-154, Aug. 2003

Seungmoon Song and Daesung Hwang and Sunglock Seo and Jeongseok Ha (2008). Linear-

Time Encodable Rate-Compatible Punctured LDPC Codes with Low Error Floors. IEEE

VTC, pages 749 - 753, May. 2008

Hui Jin and Aamod Khandekar and Robert McEliece (2000). Irregular Repeat-Accumulate

Codes. Proc. 2nd Int. Symp. Turbo Codes and Related Topics, Brest, France, pages 1 - 8,

Sep. 2000



www.manaraa.com

112

Aline Roumy and Souad Duemghar and Giuseppe Caire and Sergio Verdu (2004). Design

Methods for Irregular Repeat-Accumulate Codes. IEEE Trans. Inform. Theory, vol. 50, no.

8, pages 1711 - 1727, Aug. 2004

T. Richardson (2009). Multi-Edge Type LDPC Codes. presented at the Workshop honoring

Prof. Bob McEliece on his 60th birthday, California Institute of Technology, Pasadena, Cal-

ifornia, May. 2002

Thomas J. Richardson and M. Amin Shokrollahi and Rdiger L. Urbanke (2001). Design of

Capacity-Approaching Irregular Low-Density Parity-Check Codes. IEEE Trans. Inform.

Theory, vol. 47, no. 2, pages 619 - 637, Feb. 2001

Thomas J. Richardson and Rdiger L. Urbanke (2001). The Capacity of Low-Density Parity

Check Codes Under Message-Passing Decoding. IEEE Trans. Inform. Theory, vol. 47, no.

2, pages 599 - 618, Feb. 2001

J. Hagenauer (1988). Rate compatible punctured convolutional codes (rcpc codes) and their

applications. IEEE Trans. Commun., vol. 36, no. 4, Apr. 1988

Michael G. Luby and Michael Mitzenmacher and M. Amin Shokrollahi and Daniel A. Spielman

and Volker Stemann (1997). Practical Loss-Resilient Codes. Proc. 29th Annu. ACM Symp.

Theory of Computing, pages 150 - 159, 1997

M. Amin Shokrollahi (1999). New Sequences of Linear Time Erasure Codes approaching the

Channel Capacity. Proc. 13th International Symposium Applied Algebra, Algebraic Algo-

rithms, and Error-Correcting Codes, pages 65 - 76, 1999

Stephan ten Brink and Gerhard Kramer (2003). Design of Repeat-Accumulate Codes for Iter-

ative Detection and Decoding. IEEE Trans. Signal Processing, vol. 51, no. 11, pages 2764 -

2772, Nov. 2003



www.manaraa.com

113

Sae-Young Chung (2000). On the Construction of Some Capacity-Approaching Cod-

ing Schemes. Ph.D. dissertation, Massachusetts Institute of Technology, Cam-

bridge,Massachusetts, Sep. 2000

Stephan ten Brink (2001). Convergence Behavior of Iteratively Decoded Parallel Concatenated

Codes. IEEE Trans. Commun., vol. 49, no. 10, pages 1727 - 1737, Oct. 2001

Stephan ten Brink and Gerhard Kramer and Alexei Ashikhmin (2004). Design of Low-Density

Parity-Check Codes for Modulation and Detection. IEEE Trans. Commun., vol. 52, no. 4,

pages 670 - 678, Apr. 2004

Alexei Ashikhmin and Gerhard Kramer and Stephan ten Brink (2004). Extrinsic Information

Transfer Functions: Model and Erasure Channel Properties. IEEE Trans. Inform. Theory,

vol. 50, no. 11, pages 2657 - 2673, Nov. 2004

Eran Sharon and Alexei Ashikhmin and Simon Litsyn (2006). Analysis of Low-Density Parity-

Check Codes Based on EXIT Functions. IEEE Trans. Communications, vol. 54, no. 8, pages

1407 - 1414, Aug. 2006

Tao Tian and Christopher R. Jones and John D. Villasenor and Richard D. Wesel (2004).

Selective Avoidance of Cycles in Irregular LDPC Code Construction. IEEE Trans. Commun.,

vol. 52, no. 8, pages 1242 - 1247, Aug. 2004

Aditya Ramamoorthy and Richard Wesel (2004). Construction of Short Block Length Irregular

Low-Density Parity-Check Codes. IEEE International Conference on Communications, vol.

1, pages 410 - 414, 2004

Xiao-Yu Hu and Evangelos Eleftheriou and Dieter-Michael Arnold (2001). Progressive Edge-

Growth Tanner Graphs. IEEE GlobeCom, vol. 2, pages 995 - 1001, Nov. 2001

Wen-Yen Weng and Ramamoorthy, A. and Wesel, R.D. (2004). Lowering the error floors of

irregular high-rate LDPC codes by graph conditioning. IEEE Vehicular Technology Confer-

ence, vol. 4, pages 2549 - 2553, Sep. 2004



www.manaraa.com

114

Dariush Divsalar and Sam Dolinar and Christopher Jones (2006). Construction of Protograph

LDPC Codes with Linear Minimum Distance. IEEE Int. Symp. Inform. Theory, pages 664

- 668, Jul. 2006

Hossein Pishro-Nik and Faramarz Fekri (2007). Results on Punctured Low-Density Parity-

Check Codes and Improved Iterative Decoding Techniques. IEEE Trans. Inform. Theory,

vol. 53, no. 2, pages 599 - 614, Feb. 2007

Dariush Divsalar and Sam Dolinar and Christopher Jones (2006). Construction of Protograph

LDPC Codes with Linear Minimum Distance. IEEE Int. Symp. Inform. Theory, pages 664

- 668, Jul. 2006


	2011
	Network flow algorithms for wireless networks and design and analysis of rate compatible LDPC codes
	Cuizhu Shi
	Recommended Citation


	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACKNOWLEDGEMENTS
	ABSTRACT
	1. OVERVIEW
	1.1 Introduction on Wireless Information Flow
	1.1.1 The Known Facts
	1.1.2 The Unknown

	1.2 A Step Further – the Deterministic Channel Model
	1.3 Introduction on LDPC Codes
	1.3.1 Representation of LDPC Codes
	1.3.2 Regular and Irregular LDPC Codes
	1.3.3 Decoding of LDPC Codes
	1.3.4 Protograph LDPC Codes
	1.3.5 Multi-Edge Type LDPC Codes

	1.4 Rate-Compatible LDPC Codes
	1.4.1 Construction of Rate-Compatible LDPC Codes


	2. REVIEW OF LITERATURE
	2.1 The Deterministic Channel Model (ADT Model)
	2.1.1 How Close Is the ADT Model
	2.1.2 Characterization of the Capacity Region of the Deterministic Networks
	2.1.3 Methodologies in Adopting the ADT Model

	2.2 Network Flow Algorithms for Deterministic Wireless Networks
	2.2.1 Path Augmentation Algorithms for Wireless Deterministic Networks
	2.2.2 Other Combinatorial Algorithms for Wireless Deterministic Networks

	2.3 Efficiently Encodable Rate-Compatible LDPC (E2RC) Codes
	2.4 Density Evolution
	2.5 EXtrinsic Information Transfer Chart (EXIT Chart) Overview

	3. IMPROVED COMBINATORIAL ALGORITHMS FOR WIRELESS INFORMATION FLOW
	3.1 Introduction
	3.2 Notations and Definitions
	3.3 Improved Unicast Algorithm
	3.3.1 Improving the Original Algorithm
	3.3.2 Useful Combinatorial Features
	3.3.3 Reducing the Complexity and the Overall Algorithm

	3.4 Proof of Correctness
	3.5 Conclusions

	4. DESIGN AND ANALYSIS OF RATE COMPATIBLE LDPC CODES
	4.1 Introduction
	4.2 Main Contributions
	4.3 Background and Related Work
	4.3.1 Efficiently Encodable Rate-Compatible LDPC Codes
	4.3.2 Why EXIT Chart

	4.4 Semi-Structured E2RC-Like Code Design
	4.4.1 A New Method for Computing EXIT Function of the Structured Part
	4.4.2 Code Design Examples
	4.4.3 Puncturing Performance Analysis and Joint Optimization of Semi-Structured E2RC Codes

	4.5 Protograph E2RC Codes Construction
	4.5.1 Starting Protograph
	4.5.2 Check-Splitting
	4.5.3 Constructing Protographs with E2RC Like Structure
	4.5.4 Deciding Splitting Patterns
	4.5.5 Comparison with Previous Results

	4.6 Conclusions

	5. SUMMARY AND DISCUSSION
	APPENDIXIMPLEMENTATION OF DENSITY EVOLUTION FOR PROTOGRAPHS
	.1 Instructions
	.1.1 Software Package
	.1.2 Software Usage
	.1.3 Input
	.1.4 Outputs

	.2 Matlab Implementation of Density Evolution

	BIBLIOGRAPHY


